Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 1 Complex Numbers Miscellaneous Exercise 1 Questions and Answers.
Maharashtra State Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1
(I) Select the correct answer from the given alternatives.
    
Question 1.
 If n is an odd positive integer, then the value of 1 + (i)2n + (i)4n + (i)6n is:
 (A) -4i
 (B) 0
 (C) 4i
 (D) 4
 Answer:
 (B) 0
 Hint:
 1 + (i2)n + (i4)n + (i2)3n
 = 1 – 1 + 1 – 1 …..(n odd positive integer)
 = 0

    
Question 2.
 The value of \(\frac{i^{592}+i^{590}+i^{588}+i^{586}+i^{584}}{i^{582}+i^{580}+i^{578}+i^{576}+i^{574}}\) is equal to:
 (A) -2
 (B) 1
 (C) 0
 (D) -1
 Answer:
 (D) -1
 Hint:
 
Question 3.
 √-3 √-6 is equal to
 (A) -3√2
 (B) 3√2
 (C) 3√2 i
 (D) -3√2 i
 Answer:
 (A) -3√2
 Hint:
 √-3 √-6
 = (√3 i) (√6 i)
 = 3√2 (-1)
 = -3√2
    
Question 4.
 If ω is a complex cube root of unity, then the value of ω99 + ω100 + ω101 is:
 (A) -1
 (B) 1
 (C) 0
 (D) 3
 Answer:
 (C) 0
 Hint:
 ω99 + ω100 + ω101
 = ω99 (1 + ω + ω2)
 = ω99 (0)
 = 0

Question 5.
 If z = r(cos θ + i sin θ), then the value of \(\frac{z}{\bar{z}}+\frac{\bar{z}}{z}\) is
 (A) cos 2θ
 (B) 2cos 2θ
 (C) 2cos θ
 (D) 2sin θ
 Answer:
 (B) 2cos 2θ
 Hint:
 
Question 6.
 If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers
 (A) 0, 1
 (B) 1, 1
 (C) 1, 0
 (D) -1, 1
 Answer:
 (B) 1, 1
 Hint:
 (1 + ω)7
 = (-ω2)7
 = -ω14
 = -ω2(ω3)4
 = -ω2
 = 1 + ω
 A = 1, B = 1
Question 7.
 The modulus and argument of (1 + i√3)8 are respectively
 (A) 2 and \(\frac{2 \pi}{3}\)
 (B) 256 and \(\frac{8 \pi}{3}\)
 (C) 256 and \(\frac{2 \pi}{3}\)
 (D) 64 and \(\frac{4 \pi}{3}\)
 Answer:
 (C) 256 and \(\frac{2 \pi}{3}\)
 Hint:
 
Question 8.
 If arg (z) = θ, then arg \(\overline{(\mathrm{z})}\) =
 (A) -θ
 (B) θ
 (C) π – θ
 (D) π + θ
 Answer:
 (A) -θ
 Hint:
 Let z = \(\mathrm{re}^{\mathrm{i} \theta}\), then \(\overline{\mathrm{z}}=\mathrm{r} \mathrm{e}^{-\mathrm{i} \theta}\)
 ∴ arg \(\overline{\mathbf{z}}\) = -θ.

Question 9.
 If -1 + √3 i = \(\mathrm{re}^{\mathrm{i} \theta}\), then θ =
 (A) –\(\frac{2 \pi}{3}\)
 (B) \(\frac{\pi}{3}\)
 (C) –\(\frac{\pi}{3}\)
 (D) \(\frac{2 \pi}{3}\)
 Answer:
 (D) \(\frac{2 \pi}{3}\)
 Hint:
 
Question 10.
 If z = x + iy and |z – zi| = 1, then
 (A) z lies on X-axis
 (B) z lies on Y-axis
 (C) z lies on a rectangle
 (D) z lies on a circle
 Answer:
 (D) z lies on a circle
 Hint:
 |z – zi | = |z| |1 – i| = 1
 ∴ |z| = \(\frac{1}{\sqrt{2}}\)
 ∴ x2 + y2 = \(\frac{1}{2}\)
(II) Answer the following:
Question 1.
 Simplify the following and express in the form a + ib.
 (i) 3 + √-64
 Solution:
 3 + √-64
 = 3 + √64 √-1
 = 3 + 8i
(ii) (2i3)2
 Solution:
 (2i3)2
 = 4i6
 = 4(i2)3
 = 4(-1)3
 = -4 …..[∵ i2 = -1]
 = -4 + 0i

(iii) (2 + 3i) (1 – 4i)
 Solution:
 (2 + 3i)(1 – 4i)
 = 2 – 8i + 3i – 12i2
 = 2 – 5i – 12(-1) …..[∵ i2 = -1]
 = 14 – 5i
(iv) \(\frac{5}{2}\)i(-4 – 3i)
 Solution:
 
(v) (1 + 3i)2 (3 + i)
 Solution:
 (1 + 3i)2 (3 + i)
 = (1 + 6i + 9i2)(3 + i)
 = (1 + 6i – 9)(3 + i) ……[∵ i2 = -1]
 = (-8 + 6i)(3 + i)
 = -24 – 8i + 18i + 6i2
 = -24 + 10i + 6(-1)
 = -24 + 10i – 6
 = -30 + 10i
(vi) \(\frac{4+3 i}{1-i}\)
 Solution:
 
(vii) \(\left(1+\frac{2}{i}\right)\left(3+\frac{4}{i}\right)(5+i)^{-1}\)
 Solution:
 
(viii) \(\frac{\sqrt{5}+\sqrt{3 i}}{\sqrt{5}-\sqrt{3} i}\)
 Solution:
 
(ix) \(\frac{3 i^{5}+2 i^{7}+i^{9}}{i^{6}+2 i^{8}+3 i^{18}}\)
 Solution:
 
(x) \(\frac{5+7 i}{4+3 i}+\frac{5+7 i}{4-3 i}\)
 Solution:
 
Question 2.
 Solve the following equations for x, y ∈ R
 (i) (4 – 5i)x + (2 + 3i)y = 10 – 7i
 Solution:
 (4 – 5i)x + (2 + 3i)y = 10 – 7i
 (4x + 2y) + (3y – 5x) i = 10 – 7i
 Equating real and imaginary parts, we get
 4x + 2y= 10 i.e., 2x + y = 5 ……(i)
 and 3y – 5x = -7 ……(ii)
 Equation (i) × 3 – equation (ii) gives
 11x = 22
 ∴ x = 2
 Putting x = 2 in (i), we get
 2(2) + y = 5
 ∴ y = 1
 ∴ x = 2 and y = 1

(ii) \(\frac{x+i y}{2+3 i}\) = 7 – i
 Solution:
 \(\frac{x+i y}{2+3 i}\) = 7 – i
 x + iy = (7 – i)(2 + 3i)
 x + iy = 14 + 21i – 2i – 3i2
 x + iy = 14 + 19i – 3(-1)
 x + iy = 17 + 19i
 Equating real and imaginary parts, we get
 ∴ x = 17 and y = 19
(iii) (x + iy) (5 + 6i) = 2 + 3i
 Solution:
 
(iv) 2x + i9 y(2 + i) = x i7 + 10 i16
 Solution:
 2x + i9 y(2 + i) = x i7 + 10 i16
 2x + (i4)2 . i . y(2 + i) = x(i2)3 . i + 10 . (i4)4
 2x + (1)2 . iy(2 + i) = x(-1)3 . i + 10(1)4 ……..[∵ i2 = -1, i4 = 1]
 2x + 2yi + y i2 = -xi + 10
 2x + 2yi – y + xi = 10
 (2x – y) + (x + 2y)i = 10 + 0 . i
 Equating real and imaginary parts, we get
 2x – y = 10 ……(i)
 and x + 2y = 0 ……..(ii)
 Equation (i) × 2 + equation (ii) gives, we get
 5x = 20
 ∴ x = 4
 Putting x = 4 in (i), we get
 2(4) – y = 10
 y = 8 – 10
 ∴ y = -2
 ∴ x = 4 and y = -2
Question 3.
 Evaluate
 (i) (1 – i + i2)-15
 Solution:
 
(ii) i131 + i49
 Solution:
 i131 + i49
 = (i4)32 . i3 + (i4)12 . i
 = (1)32 (-i) + (1)12 . i
 = -i + i
 = 0

Question 4.
 Find the value of
 (i) x3 + 2x2 – 3x + 21, if x = 1 + 2i
 Solution:
 
(ii) x4 + 9x3 + 35x2 – x + 164, if x = -5 + 4i
 Solution:
 
Question 5.
 Find the square roots of
 (i) -16 + 30i
 Solution:
 Let \(\sqrt{-16+30 \mathrm{i}}\) = a + bi, where a, b ∈ R.
 Squaring on both sides, we get
 -16 + 30i = a2 + b2 i2 + 2abi
 -16 + 30i = (a2 – b2) + 2abi …..[∵ i2 = -1]
 Equating real and imaginary parts, we get
 a2 – b2 = -16 and 2ab = 30
 a2 – b2 = -16 and b = \(\frac{15}{a}\)
 
(ii) 15 – 8i
 Solution:
 Let \(\sqrt{15-8 i}\) = a + bi, where a, b ∈ R.
 Squaring on both sides, we get
 15 – 8i = a2 + b2 i2 + 2abi
 15 – 8i = (a2 – b2) + 2abi …..[∵ i2 = -1]
 Equating real and imaginary parts, we get
 a2 – b2 = 15 and 2ab = -8
 a2 – b2 = 15 and b = \(\frac{-4}{a}\)
 
 When a = 4, b = \(\frac{-4}{4}\) = -1
 When a = -4, b = \(\frac{-4}{-4}\) = 1
 ∴ \(\sqrt{15-8 i}\) = ±(4 – i)
(iii) 2 + 2√3 i
 Solution:
 Let \(\sqrt{2+2 \sqrt{3}}\) = a + bi, where a, b ∈ R.
 Squaring on both sides, we get
 2 + 2√3 i = a2 + b2 i2 + 2abi
 2 + 2√3 i = a2 – b2 + 2abi …..[∵ i2 = -1]
 Equating real and imaginary parts, we get
 a2 – b2 = 2 and 2ab = 2√3
 a2 – b2 = 2 and b = \(\frac{\sqrt{3}}{a}\)
 
(iv) 18i
 Solution:
 Let √18i = a + bi, where a, b ∈ R.
 Squaring on both sides, we get
 18i = a2 + b2 i2 + 2abi
 0 + 18i = a2 – b2 + 2abi …..[∵ i2 = -1]
 Equating real and imaginary parts, we get
 a2 – b2 = 0 and 2ab = 18
 a2 – b2 = 0 and b = \(\frac{9}{a}\)
 \(a^{2}-\left(\frac{9}{a}\right)^{2}=0\)
 \(a^{2}-\frac{81}{a^{2}}=0\)
 a4 – 81 = 0
 (a2 – 9) (a2 + 9) = 0
 a2 = 9 or a2 = -9
 But a ∈ R
 ∴ a2 ≠ -9
 ∴ a2 = 9
 ∴ a = ± 3
 When a = 3, b = \(\frac{9}{3}\) = 3
 When a = -3, b = \(\frac{9}{-3}\) = -3
 ∴ √18i = ±(3 + 3i) = ±3(1 + i)

(v) 3 – 4i
 Solution:
 Let \(\sqrt{3-4 i}\) = a + bi, where a, b ∈ R.
 Squaring on both sides, we get
 3 – 4i = a2 + b2 i2 + 2abi
 3 – 4i = a2 – b2 + 2abi ……[∵ i2 = -1]
 Equating real and imaginary parts, we get
 a2 – b2 = 3 and 2ab = -4
 a2 – b2 = 3 and b = \(\frac{-2}{a}\)
 
(vi) 6 + 8i
 Solution:
 Let \(\sqrt{6+8 i}\) = a + bi, where a, b ∈ R.
 Squaring on both sides, we get
 6 + 8i = a2 + b2 i2 + 2abi
 6 + 8i = a2 – b2 + 2abi ……[∵ i2 = -1]
 Equating real and imaginary parts, we get
 a2 – b2 = 6 and 2ab = 8
 
 
Question 6.
 Find the modulus and argument of each complex number and express it in the polar form.
 (i) 8 + 15i
 Solution:
 
(ii) 6 – i
 Solution:
 
(iii) \(\frac{1+\sqrt{3} \mathbf{i}}{2}\)
 Solution:
 
 

(iv) \(\frac{-1-\mathbf{i}}{\sqrt{2}}\)
 Solution:
 
(v) 2i
 Solution:
 
(vi) -3i
 Solution:
 
(vii) \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \mathbf{i}\)
 Solution:
 
Question 7.
 Represent 1 + 21, 2 – i, -3 – 2i, -2 + 3i by points in Argand’s diagram.
 Solution:
 The complex numbers 1 + 2i, 2 – i, -3 – 2i, -2 + 3i will be represented by the points A(1, 2), B(2, -1), C(-3, -2), D(-2, 3) respectively as shown below:
 
Question 8.
 Show that z = \(\frac{5}{(1-i)(2-i)(3-i)}\) is purely imaginary number.
 Solution:
 
Question 9.
 Find the real numbers x and y such that \(\frac{x}{1+2 i}+\frac{y}{3+2 i}=\frac{5+6 i}{-1+8 i}\)
 Solution:
 \(\frac{x}{1+2 i}+\frac{y}{3+2 i}=\frac{5+6 i}{-1+8 i}\)
 
 (3x + y) + 2(x + y)i = 5 + 6i
 Equating real and imaginary parts, we get
 3x + y = 5 ……(i)
 and 2(x + y) = 6
 i.e., x + y = 3 …….(ii)
 Subtracting (ii) from (i), we get
 2x = 2
 ∴ x = 1
 Putting x = 1 in (ii), we get
 1 + y = 3
 ∴ y = 2
 ∴ x = 1, y = 2

Question 10.
 Show that \(\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{10}+\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)^{10}=0\)
 Solution:
 
Question 11.
 Show that \(\left(\frac{1+i}{\sqrt{2}}\right)^{8}+\left(\frac{1-i}{\sqrt{2}}\right)^{8}=2\)
 Solution:
 
 
Question 12.
 Convert the complex numbers in polar form and also in exponential form.
 (i) z = \(\frac{2+6 \sqrt{3} i}{5+\sqrt{3} i}\)
 Solution:
 
 
(ii) z = -6 + √2 i
 Solution:
 z = -6 + √2 i
 ∴ a = -6, b = √2
 i.e. a < 0, b > 0
 
(iii) \(\frac{-3}{2}+\frac{3 \sqrt{3} i}{2}\)
 Solution:
 
 
Question 13.
 If x + iy = \(\frac{a+i b}{a-i b}\), prove that x2 + y2 = 1.
 Solution:
 

Question 14.
 Show that z = \(\left(\frac{-1+\sqrt{-3}}{2}\right)^{3}\) is a rational number.
 Solution:
 
Question 15.
 Show that \(\frac{1-2 i}{3-4 i}+\frac{1+2 i}{3+4 i}\) is real.
 Solution:
 
 
Question 16.
 Simplify
 (i) \(\frac{\mathrm{i}^{29}+\mathrm{i}^{39}+\mathrm{i}^{49}}{\mathrm{i}^{30}+\mathrm{i}^{40}+\mathrm{i}^{50}}\)
 Solution:
 
(ii) \(\left(\mathrm{i}^{65}+\frac{1}{\mathrm{i}^{145}}\right)\)
 Solution:
 
(iii) \(\frac{\mathrm{i}^{238}+\mathrm{i}^{236}+\mathrm{i}^{234}+\mathrm{i}^{232}+\mathrm{i}^{230}}{\mathrm{i}^{228}+\mathrm{i}^{226}+\mathrm{i}^{224}+\mathrm{i}^{222}+\mathrm{i}^{220}}\)
 Solution:
 
Question 17.
 Simplify \(\left[\frac{1}{1-2 i}+\frac{3}{1+i}\right]\left[\frac{3+4 i}{2-4 i}\right]\)
 Solution:
 
 

Question 18.
 If α and β are complex cube roots of unity, prove that (1 – α) (1 – β) (1 – α2) (1 – β2) = 9.
 Solution:
 α and β are the complex cube roots of unity.
 
Question 19.
 If ω is a complex cube root of unity, prove that (1 – ω + ω2)6 + (1 + ω – ω2)6 = 128.
 Solution:
 ω is the complex cube root of unity.
 ∴ ω3 = 1 and 1 + ω + ω2 = 0
 Also, 1 + ω2 = -ω, 1 + ω = -ω2
 ∴ L.H.S. = (1 – ω + ω2)6 + (1 + ω – ω2)6
 = [(1 + ω2) – ω]6 + [(1 + ω) – ω2]6
 = (-ω – ω))6 + (-ω2 – ω2)6
 = (-2ω)6 + (-2ω2)6
 = 64ω6 + 64ω12
 = 64(ω3)2 + 64(ω3)4
 = 64(1)2 + 64(1)4
 = 128
 = R.H.S.

Question 20.
 If ω is the cube root of unity, then find the value of \(\left(\frac{-1+\mathbf{i} \sqrt{3}}{2}\right)^{18}+\left(\frac{-1-\mathbf{i} \sqrt{3}}{2}\right)^{18}\)
 Solution:
 If ω is the complex cube root of unity, then
 
 Given Expression = ω18 + (ω2)18
 = ω18 + ω36
 = (ω3)6 + (ω3)12
 = (1)6 + (1)12
 = 2