Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 6 Determinants Miscellaneous Exercise 6 Questions and Answers.
Maharashtra State Board 11th Commerce Maths Solutions Chapter 6 Determinants Miscellaneous Exercise 6
Question 1.
 Evaluate:
 (i) \(\left|\begin{array}{ccc}
 2 & -5 & 7 \\
 5 & 2 & 1 \\
 9 & 0 & 2
 \end{array}\right|\)
 Solution:
 
 = 2(4 – 0) + 5(10 – 9) + 7(0 – 18)
 = 2(4) + 5(1) + 7(-18)
 = 8 + 5 – 126
 = -113
(ii) \(\left|\begin{array}{ccc}
 1 & -3 & 12 \\
 0 & 2 & -4 \\
 9 & 7 & 2
 \end{array}\right|\)
 Solution:
 
 = 1(4 + 28) + 3(0 + 36) + 12(0 – 18)
 = 1(32) + 3(36) + 12(-18)
 = 32 + 108 – 216
 = -76

Question 2.
 Find the value(s) of x, if
 (i) \(\left|\begin{array}{ccc}
 1 & 4 & 20 \\
 1 & -2 & -5 \\
 1 & 2 x & 5 x^{2}
 \end{array}\right|=0\)
 Solution:
 \(\left|\begin{array}{ccc}
 1 & 4 & 20 \\
 1 & -2 & -5 \\
 1 & 2 x & 5 x^{2}
 \end{array}\right|=0\)
 ∴ 1(-10x2 + 10x) – 4(5x2 + 5) + 20(2x + 2) = 0
 ∴ -10x2 + 10x – 20x2 – 20 + 40x + 40 = 0
 ∴ -30x2 + 50x + 20 = 0
 ∴ 3x2 – 5x – 2 = 0 ……[Dividing throughout by (-10)]
 ∴ 3x2 – 6x + x – 2 = 0
 ∴ 3x(x – 2) + 1(x – 2) = 0
 ∴ (x – 2) (3x + 1) = 0
 ∴ x – 2 = 0 or 3x + 1 = 0
 ∴ x = 2 or x = \(-\frac{1}{3}\)
(ii) \(\left|\begin{array}{ccc}
 1 & 2 x & 4 x \\
 1 & 4 & 16 \\
 1 & 1 & 1
 \end{array}\right|=0\)
 Solution:
 \(\left|\begin{array}{ccc}
 1 & 2 x & 4 x \\
 1 & 4 & 16 \\
 1 & 1 & 1
 \end{array}\right|=0\)
 ∴ 1(4 – 16) – 2x(1 – 16) + 4x(1 – 4) = 0
 ∴ 1(-12) – 2x(-15) + 4x(-3) = 0
 ∴ -12 + 30x – 12x = 0
 ∴ 18x = 12
 ∴ x = \(\frac{2}{3}\)
Question 3.
 By using properties of determinants, prove that \(\left|\begin{array}{ccc}
 x+y & y+z & z+x \\
 z & x & y \\
 1 & 1 & 1
 \end{array}\right|=0\).
 Solution:
 

Question 4.
 Without expanding the determinants, show that
 
 Solution:
 
 
 
 
 
Question 5.
 Solve the following linear equations by Cramer’s Rule.
 (i) 2x – y + z = 1, x + 2y + 3z = 8, 3x + y – 4z = 1
 Solution:
 Given equations are
 2x – y + z = 1
 x + 2y + 3z = 8
 3x + y – 4z = 1
 D = \(\left|\begin{array}{ccc}
 2 & -1 & 1 \\
 1 & 2 & 3 \\
 3 & 1 & -4
 \end{array}\right|\)
 = 2(-8 – 3) – (-1)(-4 – 9) + 1(1 – 6)
 = 2(-11) + 1(-13) + 1(-5)
 = -22 – 13 – 5
 = -40 ≠ 0
 Dx = \(\left|\begin{array}{ccc}
 1 & -1 & 1 \\
 8 & 2 & 3 \\
 1 & 1 & -4
 \end{array}\right|\)
 = 1(-8 – 3) – (-1)(-32 – 3) + 1(8 – 2)
 = 1(-11) + 1(-35) + 1(6)
 = -11 – 35 + 6
 = -40
 Dy = \(\left|\begin{array}{ccc}
 2 & 1 & 1 \\
 1 & 8 & 3 \\
 3 & 1 & -4
 \end{array}\right|\)
 = 2(-32 – 3) – 1(-4 – 9) + 1(1 – 24)
 = 2(-35) – 1(-13) + 1(-23)
 = -70 + 13 – 23
 = -80
 Dz = \(\left|\begin{array}{ccc}
 2 & -1 & 1 \\
 1 & 2 & 8 \\
 3 & 1 & 1
 \end{array}\right|\)
 = 2(2 – 8) – (-1)(1 – 24) + 1(1 – 6)
 = 2(-6) + 1(-23) + 1(-5)
 = -12 – 23 – 5
 = -40
 By Cramer’s Rule,
 x = \(\frac{D_{x}}{D}=\frac{-40}{-40}\) = 1
 y = \(\frac{\mathrm{D}_{y}}{\mathrm{D}}=\frac{-80}{-40}\) = 2
 z = \(\frac{\mathrm{D}_{z}}{\mathrm{D}}=\frac{-40}{-40}\) = 1
 ∴ x = 1, y = 2 and z = 1 are the solutions of the given equations.

(ii) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=-2\), \(\frac{1}{x}-\frac{2}{y}+\frac{1}{z}=3\), \(\frac{2}{x}-\frac{1}{y}+\frac{3}{z}=-1\)
 Solution:
 Let \(\frac{1}{x}\) = p, \(\frac{1}{y}\) = q, \(\frac{1}{z}\) = r
 The given equations become
 p + q + r = -2
 p – 2q + r = 3
 2p – q + 3r = -1
 D = \(\left|\begin{array}{ccc}
 1 & 1 & 1 \\
 1 & -2 & 1 \\
 2 & -1 & 3
 \end{array}\right|\)
 = 1(-6 + 1) – 1(3 – 2) + 1(-1 + 4)
 = -5 – 1 + 3
 = -3
 Dp = \(\left|\begin{array}{rrr}
 -2 & 1 & 1 \\
 3 & -2 & 1 \\
 -1 & -1 & 3
 \end{array}\right|\)
 = -2(-6 + 1) – 1(9 + 1) + 1(-3 – 2)
 = 10 – 10 – 5
 = -5
 Dq = \(\left|\begin{array}{ccc}
 1 & -2 & 1 \\
 1 & 3 & 1 \\
 2 & -1 & 3
 \end{array}\right|\)
 = 1(9 + 1) + 2(3 – 2) + 1(-1 – 6)
 = 10 + 2 – 7
 = 5
 Dr = \(\left|\begin{array}{rrr}
 1 & 1 & -2 \\
 1 & -2 & 3 \\
 2 & -1 & -1
 \end{array}\right|\)
 = 1(2 + 3) – 1(-1 – 6) – 2(-1 + 4)
 = 5 + 7 – 6
 = 6
 By Cramer’s Rule,
 p = \(\frac{\mathrm{D}_{\mathrm{p}}}{\mathrm{D}}=\frac{-5}{-3}=\frac{5}{3}\)
 q = \(\frac{\mathrm{D}_{y}}{\mathrm{D}}=\frac{-80}{-40}\) = 2
 r = \(\frac{D_{2}}{D}=\frac{-40}{-40}\) = 1
 ∴ x = \(\frac{3}{5}\), y = \(\frac{-3}{5}\), z = \(\frac{-1}{2}\) are the solutions of the given equations.
(iii) x – y + 2z = 7, 3x + 4y – 5z = 5, 2x – y + 3z = 12
 Solution:
 Given equations are
 x – y + 2z = 1
 3x + 4y – 5z = 5
 2x – y + 3z = 12
 D = \(\left|\begin{array}{ccc}
 1 & -1 & 2 \\
 3 & 4 & -5 \\
 2 & -1 & 3
 \end{array}\right|\)
 = 1(12 – 5) – (-1)(9 + 10) + 2(-3 – 8)
 = 1(7) + 1(19) + 2(-11)
 = 7 + 19 – 22
 = 4 ≠ 0
 Dx = \(\left|\begin{array}{ccc}
 7 & -1 & 2 \\
 5 & 4 & -5 \\
 12 & -1 & 3
 \end{array}\right|\)
 = 7(12 – 5) – (-1)(15 + 60) + 2(-5 – 48)
 = 7(7)+ 1(75) +2(-53)
 = 49 + 75 – 106
 = 18
 Dy = \(\left|\begin{array}{ccc}
 1 & 7 & 2 \\
 3 & 5 & -5 \\
 2 & 12 & 3
 \end{array}\right|\)
 = 1(15 + 60) – 7(9 + 10) + 2(36 – 10)
 = 1(75) – 7(19) + 2(26)
 = 75 – 133 + 52
 = -6
 Dz = \(\left|\begin{array}{ccc}
 1 & -1 & 7 \\
 3 & 4 & 5 \\
 2 & -1 & 12
 \end{array}\right|\)
 = 1(48 + 5) – (-1)(36 – 10) + 7(-3 – 8)
 = 1(53)+ 1(26) + 7(-11)
 = 53 + 26 – 77
 = 2
 By Cramer’s Rule,
 x = \(\frac{\mathrm{D}_{x}}{\mathrm{D}}=\frac{18}{4}=\frac{9}{2}\)
 y = \(\frac{D_{y}}{D}=\frac{-6}{4}=\frac{-3}{2}\)
 z = \(\frac{D_{z}}{D}=\frac{2}{4}=\frac{1}{2}\)
 ∴ x = \(\frac{9}{2}\), y = \(\frac{-3}{2}\) and z = \(\frac{1}{2}\) are the solutions of the given equations.

Question 6.
 Find the value(s) of k, if the following equations are consistent.
 (i) 3x + y – 2 = 0, kx + 2y – 3 = 0 and 2x – y = 3
 Solution:
 Given equations are
 3x + y – 2 = 0
 kx + 2y – 3 = 0
 2x – y = 3 i.e. 2x – y – 3 = 0
 Since, these equations are consistent.
 ∴ \(\left|\begin{array}{rrr}
 3 & 1 & -2 \\
 k & 2 & -3 \\
 2 & -1 & -3
 \end{array}\right|=0\)
 ∴ 3(-6 – 3) – 1(-3k + 6) – 2(-k – 4) = 0
 ∴ 3(-9) – 1 (-3k + 6) – 2(-k – 4) = 0
 ∴ -27 + 3k – 6 + 2k + 8 = 0
 ∴ 5k – 25 = 0
 ∴ k = 5
(ii) kx + 3y + 4 = 0, x + ky + 3 = 0, 3x + 4y + 5 = 0
 Solution:
 Given equations are
 kx + 3y + 4 = 0
 x + ky + 3 = 0
 3x + 4y + 5 = 0
 Since, these equations are consistent.
 ∴ \(\left|\begin{array}{lll}
 \mathrm{k} & 3 & 4 \\
 1 & \mathrm{k} & 3 \\
 3 & 4 & 5
 \end{array}\right|=0\)
 ∴ k(5k – 12) – 3(5 – 9) + 4(4 – 3k) = 0
 ∴ 5k2 – 12k + 12 + 16 – 12k = 0
 ∴ 5k2 – 24k + 28 = 0
 ∴ 5k2 – 10k – 14k + 28 = 0
 ∴ 5k(k – 2) – 14(k – 2) = 0
 ∴ (k – 2) (5k – 14) = 0
 ∴ k – 2 = 0 or 5k – 14 = 0
 ∴ k = 2 or k = \(\frac{14}{5}\)
Question 7.
 Find the area of triangles whose vertices are
 (i) A(-1, 2), B(2, 4), C(0, 0)
 Solution:
 Here, A(x1, y1) ≡ A(-1, 2), B(x2, y2) ≡ B(2, 4), C(x3, y3) ≡ C(0, 0)
 Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
 x_{1} & y_{1} & 1 \\
 x_{2} & y_{2} & 1 \\
 x_{3} & y_{3} & 1
 \end{array}\right|\)
 ∴ A(∆ABC) = \(\frac{1}{2}\left|\begin{array}{ccc}
 -1 & 2 & 1 \\
 2 & 4 & 1 \\
 0 & 0 & 1
 \end{array}\right|\)
 = \(\frac{1}{2}\) [-1(4 – 0) – 2(2 – 0) + 1(0 – 0)]
 = \(\frac{1}{2}\) (-4 – 4)
 = \(\frac{1}{2}\) (-8)
 = -4
 Since, area cannot be negative.
 ∴ A(∆ABC) = 4 sq.units
(ii) P(3, 6), Q(-1, 3), R(2, -1)
 Solution:
 Here, P(x1, y1) ≡ P(3, 6), Q(x2, y2) ≡ Q(-1, 3), R(x3, y3) ≡ R(2, -1)
 Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
 x_{1} & y_{1} & 1 \\
 x_{2} & y_{2} & 1 \\
 x_{3} & y_{3} & 1
 \end{array}\right|\)
 A(∆PQR) = \(\frac{1}{2}\left|\begin{array}{ccc}
 3 & 6 & 1 \\
 -1 & 3 & 1 \\
 2 & -1 & 1
 \end{array}\right|\)
 = \(\frac{1}{2}\) [3(3 + 1) – 6(-1 – 2) + 1(1 – 6)]
 = \(\frac{1}{2}\) [3(4) – 6(-3) + 1(-5)]
 = \(\frac{1}{2}\) (12 + 18 – 5)
 ∴ A(∆PQR) = \(\frac{25}{2}\) sq.units

(iii) L(1, 1), M(-2, 2), N(5, 4)
 Solution:
 Here, L(x1, y1) ≡ L(1, 1), M(x2, y2) ≡ M(-2, 2), N(x3, y3) ≡ N(5, 4)
 Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
 x_{1} & y_{1} & 1 \\
 x_{2} & y_{2} & 1 \\
 x_{3} & y_{3} & 1
 \end{array}\right|\)
 A(∆LMN) = \(\frac{1}{2}\left|\begin{array}{rrr}
 1 & 1 & 1 \\
 -2 & 2 & 1 \\
 5 & 4 & 1
 \end{array}\right|\)
 = \(\frac{1}{2}\) [1(2 – 4) -1(-2 – 5) + 1(-8 – 10)]
 = \(\frac{1}{2}\) [1(-2) – 1(-7) + 1(-18)]
 = \(\frac{1}{2}\) (-2 + 7 – 18)
 = \(\frac{-13}{2}\)
 Since, area cannot be negative.
 ∴ A(∆LMN) = \(\frac{13}{2}\) sq.units
Question 8.
 Find the value of k,
 (i) if the area of ∆PQR is 4 square units and vertices are P(k, 0), Q(4, 0), R(0, 2).
 Solution:
 Here, P(x1, y1) ≡ P(k, 0), Q(x2, y2) ≡ Q(4, 0), R(x3, y3) ≡ R(0, 2)
 A(∆PQR) = 4 sq.units
 Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
 x_{1} & y_{1} & 1 \\
 x_{2} & y_{2} & 1 \\
 x_{3} & y_{3} & 1
 \end{array}\right|\)
 ∴ ±4 = \(\frac{1}{2}\left|\begin{array}{lll}
 k & 0 & 1 \\
 4 & 0 & 1 \\
 0 & 2 & 1
 \end{array}\right|\)
 ∴ ±4 = \(\frac{1}{2}\) [k(0 – 2) – 0 + 1(8 – 0)]
 ∴ ±8 = -2k + 8
 ∴ 8 = -2k + 8 or -8 = -2k + 8
 ∴ -2k = 0 or 2k = 16
 ∴ k = 0 or k = 8

(ii) if area of ∆LMN is \(\frac{33}{2}\) square units and vertices are L(3, -5), M(-2, k), N(1, 4).
 Solution:
 Here, L(x1, y1) ≡ L(3, -5), M(x2, y2) ≡ M(-2, k), N(x3, y3) ≡ N(1, 4)
 A(∆LMN) = \(\frac{33}{2}\) sq.units
 Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
 x_{1} & y_{1} & 1 \\
 x_{2} & y_{2} & 1 \\
 x_{3} & y_{3} & 1
 \end{array}\right|\)
 ∴ \(\pm \frac{33}{2}=\frac{1}{2}\left|\begin{array}{ccc}
 3 & -5 & 1 \\
 -2 & \mathrm{k} & 1 \\
 1 & 4 & 1
 \end{array}\right|\)
 ∴ ±\(\frac{33}{2}\) = \(\frac{1}{2}\) [3(k – 4) – (-5) (-2 – 1) + 1(-8 – k)]
 ∴ ±33 = 3k – 12 – 15 – 8 – k
 ∴ 33 = 2k – 35
 ∴ 2k – 35 = 33 or 2k – 35 = -33
 ∴ 2k = 68 or 2k = 2
 ∴ k = 34 or k = 1
 
 









































































































