Maharashtra Board 11th Maths Solutions Chapter 9 Probability Ex 9.3

Balbharti Maharashtra State Board Class 11 Maths Solutions Pdf Chapter 9 Probability Ex 9.3 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 9 Probability Ex 9.3

Question 1.
A bag contains 3 red marbles and 4 blue marbles. Two marbles are drawn at random without replacement. If the first marble drawn is red, what is the probability that the second marble is blue?
Solution:
Total number of marbles = 3 + 4 = 7
Let event A: The first marble drawn is red.
∴ P(A) = \(\frac{{ }^{3} \mathrm{C}_{1}}{{ }^{7} \mathrm{C}_{1}}=\frac{3}{7}\)
Let event B: The second marble drawn is blue.
Since the first red marble is not replaced in the bag, we now have 6 marbles out of which 4 are blue.
∴ Probability that the second marble is blue under the condition that the first red marble is not replaced in the bag = P(B/A) = \(\frac{{ }^{4} \mathrm{C}_{1}}{{ }^{6} \mathrm{C}_{1}}=\frac{4}{6}=\frac{2}{3}\)
∴ Required probability = P(A ∩ B) = P(B/A) . P(A)
= \(\frac{2}{3} \times \frac{3}{7}\)
= \(\frac{2}{7}\)

Alternate Method:
Total number of marbles = 3 + 4 = 7
Two marbles are drawn at random without replacement.
∴ n(S) = \({ }^{7} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{1}\) = 7 × 6 = 42
Let event A: The first marble is red and second marble is blue.
First red marble can be drawn from 3 red marbles in \({ }^{3} \mathrm{C}_{1}\) ways and second blue marble can be drawn from 4 blue marbles in \({ }^{4} \mathrm{C}_{1}\) ways.
∴ n(A) = \({ }^{3} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{1}\) = 3 × 4 = 12
∴ P(A) = \(\frac{n(A)}{n(S)}=\frac{12}{42}=\frac{2}{7}\)

Maharashtra Board 11th Maths Solutions Chapter 9 Probability Ex 9.3

Question 2.
A box contains 5 green pencils and 7 yellow pencils. Two pencils are chosen at random from the box without replacement. What is the probability that both are yellow?
Solution:
Total number of pencils = 5 + 7 = 12
Let event A: The first pencil chosen is yellow.
∴ P(A) = \(\frac{{ }^{7} \mathrm{C}_{1}}{{ }^{12} \mathrm{C}_{1}}=\frac{7}{12}\)
Let event B: The second pencil chosen is yellow.
Since the first yellow pencil is not replaced in the box, we now have 11 pencils, out of which 6 are yellow.
∴ Probability that the second pencil is yellow under the condition that the first yellow pencil is not replaced in the box = P(B/A)
= \(\frac{{ }^{6} C_{1}}{{ }^{11} C_{1}}\)
= \(\frac{6}{11}\)
Required probability = P(A ∩ B)
= P(B/A) . P(A)
= \(\frac{6}{11} \times \frac{7}{12}\)
= \(\frac{7}{22}\)

Question 3.
In a sample of 40 vehicles, 18 are red, 6 are trucks, of which 2 are red. Suppose that a randomly selected vehicle is red. What is the probability it is a truck?
Solution:
One vehicle is selected from 40 vehicles.
Let event A: The selected vehicle is red.
There are total of 18 red vehicles.
∴ P(A) = \(\frac{{ }^{18} \mathrm{C}_{1}}{{ }^{40} \mathrm{C}_{1}}=\frac{18}{40}=\frac{9}{20}\)
Let event B: The selected vehicle is a truck.
There are total of 6 trucks.
Since 2 trucks are red, they are common between A and B.
∴ P(A ∩ B) = \(\frac{{ }^{2} \mathrm{C}_{1}}{{ }^{40} \mathrm{C}_{1}}=\frac{2}{40}=\frac{1}{20}\)
∴ Probability that the selected vehicle is a truck under the condition that it is red = P(B/A)
= \(\frac{P(A \cap B)}{P(A)}\)
= \(\frac{\frac{1}{20}}{\frac{9}{20}}\)
= \(\frac{1}{9}\)

Maharashtra Board 11th Maths Solutions Chapter 9 Probability Ex 9.3

Question 4.
From a pack of well-shuffled cards, two cards are drawn at random. Find the probability that both the cards are diamonds when
(i) the first card drawn is kept aside.
(ii) the first card drawn is replaced in the pack.
Solution:
In a pack of 52 cards, there are 13 diamond cards.
Let event A: The first card drawn is a diamond card.
∴ P(A) = \(\frac{{ }^{13} \mathrm{C}_{1}}{{ }^{52} \mathrm{C}_{1}}=\frac{13}{52}=\frac{1}{4}\)
(i) Let event B: The second card drawn is a diamond card.
Since the first diamond card is kept aside, we now have 51 cards, out of which 12 are diamond cards.
Probability that the second card is a diamond card under the condition that the first diamond card is kept aside in the pack = P(B/A) = \(\frac{{ }^{12} \mathrm{C}_{1}}{{ }^{51} \mathrm{C}_{1}}=\frac{12}{51}=\frac{4}{17}\)
∴ Required probability = P(A ∩ B)
= P(B/A) . P(A)
= \(\frac{1}{4} \times \frac{4}{17}\)
= \(\frac{1}{17}\)

(ii) Let event B: The second card drawn is a diamond card.
Since the first diamond card is replaced in the pack, we now again have 52 cards, out of which 13 are diamond cards.
∴ Probability that the second card is a diamond card under the condition that the first diamond card is replaced in the pack = P(B/A) = \(\frac{{ }^{13} \mathrm{C}_{1}}{{ }^{52} \mathrm{C}_{1}}=\frac{13}{52}=\frac{1}{4}\)
Required probability = P(A ∩ B)
= P(B/A) . P(A)
= \(\frac{1}{4} \times \frac{1}{4}\)
= \(\frac{1}{16}\)

Question 5.
A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are \(\frac{3}{4}\), \(\frac{1}{2}\) and \(\frac{5}{8}\). Find the probability that the target
(a) is hit exactly by one of them.
(b) is not hit by any one of them.
(c) is hit.
(d) is exactly hit by two of them.
Solution:
Let event A: A can hit the target,
event B: B can hit the target,
event C: C can hit the target.
Maharashtra Board 11th Maths Solutions Chapter 9 Probability Ex 9.3 Q5
Since A, B, C are independent events,
A’, B’, C’ are also independent events.
(a) Let event W: Target is hit exactly by one of them.
Maharashtra Board 11th Maths Solutions Chapter 9 Probability Ex 9.3 Q5.1

(b) Let event X: Target is not hit by any one of them.
∴ P(X) = P(A’ ∩ B’ ∩ C’)
= P(A’) P(B’) P(C’)
= \(\frac{1}{4} \times \frac{1}{2} \times \frac{3}{8}\)
= \(\frac{3}{64}\)

Maharashtra Board 11th Maths Solutions Chapter 9 Probability Ex 9.3

(c) Let event Y: Target is hit.
∴ P(Y) = 1 – P(target is not hit by any one of them)
= 1 – \(\frac{3}{64}\)
= \(\frac{61}{64}\)

(d) Let event Z: Target is hit by exactly two of them.
Maharashtra Board 11th Maths Solutions Chapter 9 Probability Ex 9.3 Q5.2

Question 6.
The probability that a student X solves a problem in dynamics is \(\frac{2}{5}\) and the probability that student Y solves the same problem is \(\frac{1}{4}\). What is the probability that
(i) the problem is not solved?
(ii) the problem is solved?
(iii) the problem is solved exactly by one of them?
Solution:
Let event A: Student X solves the problem in dynamics,
event B: Student Y solves the problem in dynamics.
∴ P(A) = \(\frac{2}{5}\), P(B) = \(\frac{1}{4}\)
∴ P(A’) = 1 – P(A) = 1 – \(\frac{2}{5}\) = \(\frac{3}{5}\)
P(B’) = 1 – P(B) = 1 – \(\frac{1}{4}\) = \(\frac{3}{4}\)
Since A and B are independent events,
A’ and B’ are also independent events.
(i) Let event C: Problem is not solved.
∴ P(C) = P(A’ ∩ B’)
= P(A’) . P(B’)
= \(\frac{3}{5} \times \frac{3}{4}\)
= \(\frac{9}{20}\)

(ii) Let event D: Problem is solved.
Problem can be solved if at least one of the two students solves the problem.
∴ P(D) = P(at least one student solves the problem)
= 1 – P(no student solves the problem)
= 1 – P(A’ ∩ B’)
= 1 – P(A’) P(B’)
= 1 – \(\frac{3}{5} \times \frac{3}{4}\)
= 1 – \(\frac{9}{20}\)
= \(\frac{11}{20}\)

(iii) Let event E: The problem is solved exactly by one of them.
∴ P(E) = P(A’ ∩ B) ∪ P(A ∩ B’)
= P(A’) . P(B) + P(A) . P(B’)
= \(\left(\frac{3}{5} \times \frac{1}{4}\right)+\left(\frac{2}{5} \times \frac{3}{4}\right)\)
= \(\frac{3}{20}+\frac{6}{20}\)
= \(\frac{9}{20}\)

Question 7.
A speaks truth in 80% of the cases and B speaks truth in 60% of the cases. Find the probability that they contradict each other in narrating an incident.
Solution:
Let event A : A speaks the truth,
event B : B speaks the truth.
∴ P(A) = \(\frac{80}{100}=\frac{4}{5}\)
and P(B) = \(\frac{60}{100}=\frac{3}{5}\)
P(A’) = 1 – P(A) = 1 – \(\frac{4}{5}\) = \(\frac{1}{5}\)
and P(B’) = 1 – P(B) = 1 – \(\frac{3}{5}\) = \(\frac{2}{5}\)
∴ P(A and B contradict each other) = P(A speaks the truth and B lies) + P (A lies and B speaks the truth)
= P(A ∩ B’) + P(A’ ∩ B)
= P(A) P(B’) + P(A’) P(B)
= \(\left(\frac{4}{5} \times \frac{2}{5}\right)+\left(\frac{1}{5} \times \frac{3}{5}\right)\)
= \(\frac{8}{25}+\frac{3}{25}\)
= \(\frac{11}{25}\)

Maharashtra Board 11th Maths Solutions Chapter 9 Probability Ex 9.3

Question 8.
Two hundred patients who had either Eye surgery or Throat surgery were asked whether they were satisfied or unsatisfied regarding the result of their surgery. The following table summarizes their response.
Maharashtra Board 11th Maths Solutions Chapter 9 Probability Ex 9.3 Q8
If one person from the 200 patients is selected at random, determine the probability
(a) that the person was satisfied given that the person had Throat surgery.
(b) that person was unsatisfied given that the person had eye surgery.
(c) the person had Throat surgery given that the person was unsatisfied.
Solution:
(a) Let event A: The patient was satisfied,
event B: The patient had throat surgery.
Given, n(S) = 200
n(A ∩ B) = 70
∴ P(A ∩ B) = \(\frac{\mathrm{n}(\mathrm{A} \cap \mathrm{B})}{\mathrm{n}(\mathrm{S})}=\frac{70}{200}\)
n(B) = 95
∴ P(B) = \(\frac{n(B)}{n(S)}=\frac{95}{200}\)
∴ Required probability = P(A / B)
= \(\frac{P(A \cap B)}{P(B)}\)
= \(\frac{\left(\frac{70}{200}\right)}{\left(\frac{95}{200}\right)}\)
= \(\frac{70}{95}\)
= \(\frac{14}{19}\)

Check:
Reduce the sample space to the set of throat patients only.
n(S) = 95
Let E : Patient had satisfactory throat surgery.
n(E) = 70
∴ P(E) = \(\frac{n(E)}{n(S)}=\frac{70}{95}=\frac{14}{19}\)

(b) Let event C : The patient was unsatisfied,
event D : The patient had a eye surgery.
Given, n(S) = 200
n(C ∩ D) = 15
∴ P(C ∩ D) = \(\frac{n(C \cap D)}{n(S)}=\frac{15}{200}\)
n(D) = 105
∴ P(D) = \(\frac{105}{200}\)
Required probability = P(C / D)
= \(\frac{P(C \cap D)}{P(D)}\)
= \(\frac{\left(\frac{15}{200}\right)}{\left(\frac{105}{200}\right)}\)
= \(\frac{1}{7}\)

(c) Let event F : The patient had a throat surgery,
event G : The patient was unsatisfied.
Given, n(S) = 200
n(F ∩ G) = 25
∴ P(F ∩ G) = \(\frac{n(F \cap G)}{n(S)}=\frac{25}{200}\)
n(G) = 40
∴ P(G) = \(\frac{n(G)}{n(S)}=\frac{40}{200}\)
∴ Required probability = P(F / G)
= \(\frac{P(F \cap G)}{P(G)}\)
= \(\frac{\left(\frac{25}{200}\right)}{\left(\frac{40}{200}\right)}\)
= \(\frac{5}{8}\)

Maharashtra Board 11th Maths Solutions Chapter 9 Probability Ex 9.3

Question 9.
Two dice are thrown together. Let A be the event ‘getting 6 on the first die’ and B be the event ‘getting 2 on the second die’. Are events A and B independent?
Solution:
When two dice are thrown, the sample space is
S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}
∴ n(S) = 36
Let event A: Getting 6 on the first die.
∴ A = {(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}
∴ n(A) = 6
∴ P(A) = \(\frac{n(A)}{n(S)}=\frac{6}{36}=\frac{1}{6}\)
Let event B : Gettting 2 on the second die.
∴ B = {(1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2)}
∴ n(B) = 6
∴ P(B) = \(\frac{n(B)}{n(S)}=\frac{6}{36}=\frac{1}{6}\)
Now, A ∩ B = {(6, 2)}
∴ n(A ∩ B) = 1
∴ P(A ∩ B) = \(\frac{\mathrm{n}(\mathrm{A} \cap \mathrm{B})}{\mathrm{n}(\mathrm{S})}=\frac{1}{36}\) …..(i)
P(A) × P(B) = \(\frac{1}{6} \times \frac{1}{6}=\frac{1}{36}\) ……..(ii)
From (i) and (ii), we get
P(A ∩ B) = P(A) × P(B)
∴ A and B are independent events.

Question 10.
The probability that a man who is 45 years old will be alive till he becomes 70 is \(\frac{5}{12}\). The probability that his wife who is 40 years old will be alive till she becomes 65 is \(\frac{3}{8}\). What is the probability that, 25 years hence,
(a) the couple will be alive?
(b) exactly one of them will be alive?
(c) none of them will be alive?
(d) at least one of them will be alive?
Solution:
Let event A: The man will be alive till 70.
∴ P(A) = \(\frac{5}{12}\)
Let event B: The wife will be alive till 65.
∴ P(B) = \(\frac{3}{8}\)
∴ P(A’) = 1 – P(A) = 1 – \(\frac{5}{12}\) = \(\frac{7}{12}\)
P(B’) = 1 – P(B) = 1 – \(\frac{3}{8}\) = \(\frac{5}{8}\)
Since A and B are independent events,
A’ and B’ are also independent events.
(a) Let event C : Both man and his wife will be alive.
∴ P(C) = P(A ∩ B) = P(A) . P(B)
= \(\frac{5}{12} \times \frac{3}{8}\)
= \(\frac{5}{32}\)

(b) Let event D: Exactly one of them will be alive.
∴ P(D) = P(A’ ∩ B) + P(A ∩ B’)
= P(A’) . P(B) + P(A) . P(B’)
= \(\left(\frac{7}{12} \times \frac{3}{8}\right)+\left(\frac{5}{12} \times \frac{5}{8}\right)\)
= \(\frac{21}{96}+\frac{25}{96}\)
= \(\frac{23}{48}\)

(c) Let event E: None of them will be alive.
∴ P(E) = P(A’ ∩ B’) = P(A’) . P(B’)
= \(\frac{7}{12} \times \frac{5}{8}\)
= \(\frac{35}{96}\)

(d) Let event F: At least one of them will be alive.
∴ P(F) = 1 – P(none of them will be alive)
= 1 – \(\frac{35}{96}\)
= \(\frac{61}{96}\)

Maharashtra Board 11th Maths Solutions Chapter 9 Probability Ex 9.3

Question 11.
A box contains 10 red balls and 15 green balls. Two balls are drawn in succession without replacement. What is the probability that,
(a) the first is red and the second is green?
(b) one is red and the other is green?
Solution:
Total number of balls = 10 + 15 = 25
(a) Let event A: First ball drawn is red.
∴ P(A) = \(\frac{{ }^{10} \mathrm{C}_{1}}{{ }^{25} \mathrm{C}_{1}}=\frac{10}{25}=\frac{2}{5}\)
Let event B: Second ball drawn is green.
Since the first red ball is not replaced in the box, we now have 24 balls, out of which 15 are green.
∴ Probability that the second ball is green under the condition that the first red ball is not replaced in the box = P(B/A) = \(\frac{{ }^{15} \mathrm{C}_{1}}{{ }^{24} \mathrm{C}_{1}}=\frac{15}{24}=\frac{5}{8}\)
∴ Required probability = P(A ∩ B) = P(B/A) . P(A)
= \(\frac{2}{5} \times \frac{5}{8}\)
= \(\frac{1}{4}\)

(b) To find the probability that one ball is red and the other is green, there are two possibilities:
First ball is red and second ball is green.
OR
The first ball is the green and the second ball is red.
From above, we get
P(First ball is red and second ball is green) = \(\frac{1}{4}\)
Similarly,
P(First ball is green and second ball is red) = \(\frac{{ }^{15} \mathrm{C}_{1}}{{ }^{25} \mathrm{C}_{1}} \times \frac{{ }^{10} \mathrm{C}_{1}}{{ }^{24} \mathrm{C}_{1}}=\frac{15}{25} \times \frac{10}{24}=\frac{1}{4}\)
∴ Required probability = P(First ball is red and second ball is green) + P(First ball is green and second ball is red)
= \(\frac{1}{4}\) + \(\frac{1}{4}\)
= \(\frac{1}{2}\)

Question 12.
A bag contains 3 yellow and 5 brown balls. Another bag contains 4 yellow and 6 brown balls. If one ball is drawn from each bag, what is the probability that,
(a) both the balls are of the same colour?
(b) the balls are of a different colours?
Solution:
(a) Let event A: A yellow ball is drawn from each bag.
Probability of drawing one yellow ball from total 8 balls of first bag and that of drawing one yellow ball out of total 10 balls of second bag is
P(A) = \(\frac{{ }^{3} \mathrm{C}_{1}}{{ }^{8} \mathrm{C}_{1}} \times \frac{{ }^{4} \mathrm{C}_{1}}{{ }^{10} \mathrm{C}_{1}}\) = \(\frac{3}{8} \times \frac{4}{10}=\frac{3}{20}\)
Let event B: A brown ball is drawn from each bag.
Probability of drawing one brown ball out of total 8 balls of first bag and that of drawing one brown ball out of total 10 balls of second bag is
P(B) = \(\frac{{ }^{5} \mathrm{C}_{1}}{{ }^{8} \mathrm{C}_{1}} \times \frac{{ }^{6} \mathrm{C}_{1}}{{ }^{10} \mathrm{C}_{1}}\) = \(\frac{5}{8} \times \frac{6}{10}=\frac{3}{8}\)
Since both the events are mutually exclusive events,
P(A ∩ B) = 0
∴ P(both the balls are of the same colour) = P(both are of yellow colour) or P(both are of brown colour)
= P(A) + P(B)
= \(\frac{3}{20}+\frac{3}{8}\)
= \(\frac{21}{40}\)

(b) P(both the balls are of different colour) = 1 – P(both the balls are of the same colour)
= 1 – \(\frac{21}{40}\)
= \(\frac{19}{40}\)

Maharashtra Board 11th Maths Solutions Chapter 9 Probability Ex 9.3

Question 13.
An urn contains 4 black, 5 white, and 6 red balls. Two balls are drawn one after the other without replacement. What is the probability that at least one of them is black?
Solution:
Total number of balls in the um = 4 + 5 + 6 = 15
Two balls are drawn from 15 balls without replacement.
∴ n(S) = \({ }^{15} \mathrm{C}_{1} \times{ }^{14} \mathrm{C}_{1}\) = 15 × 14 = 210
Let event A: At least one ball is black.
i.e., the first ball is black, and the second ball is non-black or the first ball is non-black and the second ball is black, or both the first and second balls are black.
∴ n(A) = \({ }^{4} \mathrm{C}_{1} \times{ }^{11} \mathrm{C}_{1}+{ }^{11} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{1}+{ }^{4} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1}\)
= 4 × 11 + 11 × 4 + 4 × 3
= 100
∴ P(A) = \(\frac{n(A)}{n(S)}\) = \(\frac{100}{210}=\frac{10}{21}\)

Check:
Required probability = 1 – P(no black ball in two balls)
= 1 – \(\frac{{ }^{11} C_{2}}{{ }^{15} C_{2}}=1-\frac{11 \times 10}{15 \times 14}=1-\frac{11}{21}=\frac{10}{21}\)

Question 14.
Three fair coins are tossed. What is the probability of getting three heads given that at least two coins show heads?
Solution:
When three fair coins are tossed, the sample space is
S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
∴ n(S) = 8
Let event A: Getting three heads.
∴ A = {HHH}
Let event B: Getting at least two heads.
∴ B = {HHT, HTH, THH, HHH}
∴ n(B) = 4
∴ P(B) = \(\frac{n(B)}{n(S)}=\frac{4}{8}\)
Now, A ∩ B = {HHH}
∴ n(A ∩ B) = 1
∴ P(A ∩ B) = \(\frac{n(A \cap B)}{n(S)}=\frac{1}{8}\)
∴ Probability of getting three heads, given that at least two coins show heads, is given by
P(A/B) = \(\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}\)
= \(\frac{\frac{1}{8}}{\frac{4}{8}}\)
= \(\frac{1}{4}\)

Question 15.
Two cards are drawn one after the other from a pack of 52 cards without replacement. What is the probability that both the cards are drawn are face cards?
Solution:
In a pack of52 cards, there are 12 face cards.
Let event A: The first card drawn is a face card.
∴ P(A) = \(\frac{{ }^{12} C_{1}}{{ }^{52} C_{1}}=\frac{12}{52}=\frac{3}{13}\)
Let event B: The second card drawn is a face card.
Since the first card is not replaced in the pack, we now have 51 cards, out of which 11 are face cards.
∴ Probability that the second card is a face card under the condition that the first card is not replaced in the pack = P(B/A) = \(\frac{{ }^{11} C_{1}}{{ }^{51} C_{1}}=\frac{11}{51}\)
∴ Required probability = P(A ∩ B) = P(B/A) . P(A)
= \(\frac{11}{51} \times \frac{3}{13}\)
= \(\frac{11}{221}\)

Maharashtra Board 11th Maths Solutions Chapter 9 Probability Ex 9.3

Question 16.
Bag A contains 3 red and 2 white balls and bag B contains 2 red and 5 white balls. A bag is selected at random, a ball is drawn and put into the other bag, and then a ball is drawn from that bag. Find the probability that both the balls are drawn are of the same colour.
Solution:
Let event C1: The first ball drawn is red and from bag A,
event D1: The first ball drawn is white and from bag A,
event E1: The first ball drawn is red and from bag B,
event F1: The first ball drawn is white and from bag B,
event C2: Second ball drawn is red and from bag B,
event D2: Second ball drawn is white and from bag B,
event E2: Second ball drawn is red and from bag A,
event F2: Second ball drawn is white and from bag A,
event G: Selecting bag A in the first place,
event H: Selecting bag B in the first place.
P(G) = P(H) = \(\frac{1}{2}\)
Let event X: Both the balls drawn are of same colour.
∴ P(X) = P(G) × P (X/G) + P(H) × P(X/H) …….(i)
If bag A is selected in first place, then In bag A, we have 5 balls, out of which 3 are red.
Probability of getting first red ball from bag A = P(C1) = \(\frac{{ }^{3} \mathrm{C}_{1}}{{ }^{5} \mathrm{C}_{1}}=\frac{3}{5}\)
Since first red ball is put into the bag B, we now have 8 balls in bag B, out of which 3 are red.
∴ Probability of getting second red ball from bag B.
P(C2/C1) = \(\frac{{ }^{3} C_{1}}{{ }^{8} C_{1}}=\frac{3}{8}\)
Similarly, probability of getting first white ball from bag A = P(D1) = \(\frac{{ }^{2} C_{1}}{{ }^{5} C_{1}}=\frac{2}{5}\)
and probability of getting second white ball form bag B = P(D2/D1) = \(\frac{{ }^{6} C_{1}}{{ }^{8} C_{1}}=\frac{6}{8}\)
∴ P(X/G) = P(C1) P(C2/C1) + P(D1) P(D2/D1)
= \(\frac{3}{5} \times \frac{3}{8}+\frac{2}{5} \times \frac{6}{8}\)
= \(\frac{21}{40}\) …..(ii)
Similarly, P(X/H) = P(E1) P(E2/E1) + P(F1) P(F2/F1)
= \(\frac{2}{7} \times \frac{4}{6}+\frac{5}{7} \times \frac{3}{6}\)
= \(\frac{23}{42}\) ………(iii)
From (i), (ii), (iii),
Required probability = \(\frac{1}{2} \times \frac{21}{40}+\frac{1}{2} \times \frac{23}{42}\)
= \(\frac{3604}{6720}\)
= \(\frac{901}{1680}\)

Question 17.
Activity: A bag contains 3 red and 5 white balls. Two balls are drawn at random one after the other without replacement. Find the probability that both the balls are white.
Solution:
Let, event A: The first ball drawn is white
event B: Second ball drawn is white.
P(A) = \(\frac{5}{8}\)
After drawing the first ball, without replacing it into the bag a second ball is drawn from the remaining 7 balls.
∴ P(B/A) = \(\frac{4}{7}\)
∴ P(Both balls are white) = P(A ∩ B)
= P(A) . P(B/A)
= \(\frac{5}{8}\) × \(\frac{4}{7}\)
= \(\frac{5}{14}\)

Maharashtra Board 11th Maths Solutions Chapter 9 Probability Ex 9.3

Question 18.
A family has two children. Find the probability that both the children are girls, given that at least one of them is a girl.
Solution:
A family has two children.
∴ Sample space S = {BB, BG, GB, GG}
∴ n(S) = 4
Let event A: At least one of the children is a girl.
∴ A = {GG, GB, BG}
∴ n(A) = 3
∴ P(A) = \(\frac{n(A)}{n(S)}=\frac{3}{4}\)
Let event B: Both children are girls.
∴ B = {GG}
∴ n(B) = 1
∴ P(B) = \(\frac{n(B)}{n(S)}=\frac{1}{4}\)
Also, A ∩ B = B
∴ P(A ∩ B) = P(B) = \(\frac{1}{4}\)
∴ Required probability = P(B/A)
= \(\frac{P(B \cap A)}{P(A)}\)
= \(\frac{\frac{1}{4}}{\frac{3}{4}}\)
= \(\frac{1}{3}\)

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Balbharti Maharashtra State Board 11th Chemistry Important Questions Chapter 16 Chemistry in Everyday Life Important Questions and Answers.

Maharashtra State Board 11th Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 1.
Write a note on nutrients.
Answer:
Nutrients:

  • Nutrients are obtained from food and are used as a source of energy by the body.
  • The main nutrients obtained from food are carbohydrates, lipids, proteins, vitamins, minerals and water. Most nutrients are organic macromolecules.
  • Along with providing energy, these nutrients also regulate various body functions like growth, repair of damaged body tissues, etc.

The following table consists of different types of nutrients and their major sources.

Type of nutrientSources
CarbohydratesGrains, fruits, vegetables, etc.
ProteinsMeat, fish. eggs, dairy products, pulses, etc.
LipidsDairy products, vegetable oil, animal fats, etc.
VitaminsGrains, fruits, vegetables, meat, fish, eggs, dairy products, pulses, etc.

Question 2.
What happens when proteins and carbohydrates present in foods are digested in presence of enzymes?
Answer:

  • Proteins and carbohydrates are organic polymeric macromolecules.
  • When food is digested in presence of enzymes, the polymeric carbohydrates and proteins break down into monomers, i.e., glucose and α-amino acids, respectively.

Question 3.
Quality of food changes on shelving. Explain.
Answer:

  • Enzymes are naturally present in all food materials.
  • Quality of food changes on shelving mostly due to enzyme action, chemical reactions with the environment, and the action of microorganisms.

Question 4.
Give two beneficial effects of shelving of food in day-to-day life.
Answer:

  • The setting of milk into curd.
  • Raising flour dough to make bread.

[Note: These changes are brought about by the action of microorganisms.]

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 5.
How are the chemical reactions of foodstuff with the environment controlled during storage?
Answer:

  • Primarily the oxygen and microorganisms in the air are responsible for adverse effects on stored food.
  • The exposure of stored food to the atmosphere is minimized by storing them in an airtight container, evacuating or filling the container with N2 gas.
  • The rate of a chemical reaction decreases with the lowering of temperature. Thus, refrigeration is useful for controlling the chemical reaction of foodstuff with the environment.
  • The reactions of foodstuff with the environment are catalyzed by enzymes. Due to boiling, the enzymes become denatured and the reactions are controlled.

Question 6.
What is the main aim of food preservation and food processing methods?
Answer:
Food preservation and food processing methods aim at the prevention of undesirable changes and attempt to bring about desirable changes in food.

Question 7.
The melting points of unsaturated fats are lower. Give reason.
Answer:

  • The long carbon chains of unsaturated fatty acids contain one or more C=C double bonds which produces one or more ‘kinks’ in the chain. This prevents the molecules from packing closely together.
  • Also, the van der Waals forces between the unsaturated chains are weak.

Hence, the melting points of unsaturated fats are lower.

Question 8.
i. What are natural fats? Comment on their melting points.
ii. Explain how unsaturation affects the melting point and crystalline nature of fats.
Answer:
i. Natural fats are mixtures of triglycerides. They do not have sharp melting points and melt over a range of temperatures.

ii. Effect of unsaturation:

  • The more unsaturated the fat (i.e., the presence of C=C bonds), lower is its melting point.
  • Also, they will be less crystalline in nature.

Note: Naturals fats and their physical states

Mainly saturated fatsMainly monounsaturated fatsMainly polyunsaturated fats
Coconut fat/oil, butterfat, lard, margarine, Vanaspati gheeOlive oil, peanut oil, canola oilSafflower oil, sunflower oil, soybean oil, com oil, fish oil
SolidLiquidLiquid

Note: Molecular shapes of fats (A schematic representation):
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 1

Question 9.
Write a note on cis and trans form of unsaturated fats.
Answer:
Due to the presence of C=C double bonds, unsaturated fats can have two geometrical isomers, i.e., cis form and transform.
i. Cis form:

  • In the cis form of an unsaturated fatty acid, the two hydrogens on the two double bonded carbons are on the same side of the double bond.
  • It is the most common form of unsaturated fats.
  • Cis fats do not cause deposition of cholesterol in blood vessels and thus, decrease the chance of developing coronary heart disease.

ii. Transform:

  • In the transform of an unsaturated fatty acid, the two hydrogens on the two double bonded carbons are on the opposite sides of the double bond.
  • Trans fats are difficult to metabolize and may get deposited to dangerous levels in fatty tissues.
  • Large amount of trans unsaturated fats, increase the tendency of cholesterol getting deposited in the blood vessels leading to increased risk of cardiovascular disease.

[Note: Transform occurs only in animal fats and processed unsaturated fats.]

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 10.
In which form, fats are used to transport cholesterol in the body?
Answer:
Fats in the form of lipoprotein are used to transport cholesterol in the body.

Question 11.
Give reason: Excessive low-density lipoprotein (LDL) increases the risk of cardio vascular diseases.
Answer:
Excessive low-density lipoprotein (LDL) increases the risk of cardio vascular diseases because it causes deposition of cholesterol in blood vessels.

Question 12.
What does the term omega represent in unsaturated fatty acids? Explain with the help of an example.
Answer:
i. Omega denotes the last carbon of the carbon chain in unsaturated fatty acids.
ii. Depending upon the position of the double bond, there are several omega fatty acids such as omega-3 and omega-6 fatty acids.
iii. These names are given for the position of the double bond in a long carbon chain of the unsaturated fatty acid.
iv. Omega-3 fatty acids have C = C bond between the third and fourth carbon from the end of a carbon chain.
e.g. Linolenic acid (9,12,15-octadecatrienoic acid).
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 2

Question 13.
Do omega-3 and omega-6 fats have same effect on the body? Discuss the effects.
Answer:
No, omega-3 and omega-6 fats have different effects on the body.
Omega-3 fats are found to raise the high density lipoprotein, HDL (good cholesterol) level of blood whereas omega-6 fats are considered to increase the risk of high blood pressure.

Question 14.
State TRUE or FALSE. Correct the false statement.
i. Fats are triglycerides of fatty acids.
ii. Linolenic acid is an omega-3 fatty acid having four C = C double bonds in its structure.
iii. Omega-6 fats are considered to increase the risk of high blood pressure.
Answer:
i. True
ii. False
Linolenic acid is an omega-3 fatty acid having three C = C double bonds in its structure.
iii. True

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 15.
Name few sources of omega-3 fatty acids.
Answer:
Foods like walnuts, flaxseeds, chia seeds, soybean, cod liver oil are rich source of omega-3 fatty acids.

Question 16.
Draw the structure of vitamin E (tocopherol).
Answer:
Structure of vitamin E (tocopherol):
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 3

Question 17.
Give the sources of vitamin E.
Answer:
Vitamin E can be obtained from foods such as wheat germ, nuts, seeds, green leafy vegetables and oils like safflower oil.

Question 18.
What are synthetic antioxidants? Give an example.
Answer:
Synthetic antioxidant:

  • Synthetic antioxidants are chemicals that are synthesized in the laboratory and used as a substitute for natural antioxidants.
  • They delay the onset of oxidant or slow down the rate of oxidation of foodstuff.
  • They are added as additives to increase the shelf life of packed foods.
  • Common structural units found in synthetic antioxidants are phenolic -OH group and tertiary butyl group.
    e.g. BHT, which is 3,5-di-tert-butyl-4-hydroxytoluene.

Question 19.
Write a short note on BHT.
Answer:
1. BHT (butylated hydroxytoluene) is a synthetic antioxidant.
2. It is used as an additive to increase the shelf life of packed foods.
3. Structure of BHT contains a phenolic – OH group (which is responsible for its antioxidant properties) and tertiary butyl group.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 4
IUPAC name: 3,5-Di-tert-butyl-4-hydroxytoluene

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 20.
Define the term: Drug
Answer:
A chemical which interacts with biomolecules such as carbohydrates, lipids, proteins and nuclei acids and produces a biological response is called drug.

Question 21.
i. Which type of drug is used as medicine?
ii. What does a medicine contain?
iii. What are medicines used for?
Answer:
i. A drug having therapeutic and useful biological response is used as medicine.
ii. A medicine contains a drug as its active ingredient. Besides, it contains some additional chemicals which make the drug suitable for its use as medicine.
iii. Medicines are used in diagnosis, prevention and treatment of a disease.
[Note: Drugs being foreign substances in a body, often give rise to undesirable, adverse side effects.]

Question 22.
Explain the following terms:
i. Drug design
ii. Generic medicines
Answer:
i. Drug design is an important branch of medicinal chemistry which aims at synthesis of new molecules having better biological response. Now-a-days, there is an increasing trend in drug design to take cognizance of traditional medical knowledge such as Ayurvedic medicine or natural materials to discover new drugs.

ii. The drug manufacturing companies usually have a patent for drugs which are sold with the brand name. After the expiry of patent, the drug can be sold in the name of its active ingredient. These are called generic medicines.

Question 23.
What are analgesics? Explain their mode of action.
Answer:
Analgesics:

  • Drugs which give relief from pain are called analgesics.
    e.g. Aspirin, paracetamol
  • Most of the analgesics are anti-inflammatory drugs, which kill pain by reducing inflammation or swelling.

Question 24.
Mention the medicinal properties of salicylic acid.
Answer:
Salicylic acid has pain-killing and fever reducing properties.

Question 25.
i. What is aspirin? Write its use.
ii. Mention its side effect.
Answer:
i. Aspirin is acetyl derivative of salicylic acid.
It is widely used as an analgesic.
ii. It has a fewer side effects than salicylic acid. However, it retains stomach irritating side effects of salicylic acid.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 26.
Draw the structure of salicylic acid and write its IUPAC name.
Answer:
Structure of salicylic acid:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 5
IUPAC name: 2-Hydroxybenzoic acid

Question 27.
Draw structures of following analgesics and write their molecular formula,
i. Aspirin
ii. Paracetamol
Answer:
i. Structure and molecular formula of aspirin:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 6

ii. Structure and molecular formula of paracetamol:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 7

Question 28.
What are antimicrobial drugs?
Answer:
Any drug that inhibits or kills microbial cells that include bacteria, fungi and viruses, are called antimicrobial drugs.

Question 29.
Give a brief classification of antimicrobials.
Answer:
Antimicrobials are classified into the following three categories:
i. Disinfectants:

  • Disinfectants are non-selective antimicrobials, which kill a wide range of microorganisms including bacteria.
  • Disinfectants are used on non-living surfaces. For example, floors, instruments, sanitary ware, etc.

ii. Antiseptics:
Antiseptics are used to sterilise surfaces of living tissue when the risk of infection is very high, such as during surgery or on wounds.

iii. Antibiotics:
Antibiotics are a type of antimicrobial designed to target bacterial infections within or on the body.

Question 30.
Name the ingredients present in dettol.
Answer:
Chloroxylenol is the active ingredient of dettol. The other ingredients of dettol are isopropyl alcohol, pine oil, castor oil soap, caramel and water.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 31.
State whether the following statements are TRUE or FALSE. Correct the statement, if false.
i. A concentrated solution of boric acid is used as an antiseptic for eyes.
ii. Iodoform is a powerful antiseptic.
iii. The active ingredient present in dettol is chloroxylenol.
Answer:
i. False
A dilute aqueous solution of boric acid is used as an antiseptic for eyes.
ii. True
iii. True

Question 32.
Instead of phenol, it’s chloro derivatives are used as antiseptics. Explain.
Answer:

  • A dilute aqueous solution of phenol has antiseptic properties but it is found to be corrosive in nature.
  • Many chloro derivatives of phenol are more potent antiseptic and have less corrosive effects than phenol, if used in lower concentrations.

Thus, instead of phenol it’s chloro derivatives are used as antiseptics.

Question 33.
Draw the structures of the following compounds and name the class of antimicrobials to which they belong.
i. Thymol
ii. p-Chloro-o-benzylphenol
iii. 2,4,6-Trichlorophenol
Answer:
i. Thymol: It is an antiseptic.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 8
ii. p-Chloro-o-benzylphenol: It is a disinfectant. OH
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 9
iii. 2,4,6-Trichlorophenol: It is an antiseptic.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 10

Question 34.
What are antibiotics?
Answer:
Antibiotics are drugs which are purely synthetic or obtained from microorganisms like bacteria, fungi or moulds.
e.g. Salvarsan, Prontosil

Question 35.
Name the first effective drug used in treatment of syphilis.
Answer:
Salvarsan was the first effective drug used in treatment of syphilis.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 36.
Name the following:
i. An effective diazo antibacterial drug.
ii. One example of a sulpha drug.
Answer:
i. Prontosil
ii. Sulphapyridine

Question 37.
Name the diazo antibacterial, which gets converted to sulphanilamide in the body.
Answer:
Prontosil is an effective diazo antibacterial, which gets converted to a simpler compound, sulphanilamide, in the body.

Question 38.
Draw the structure of the following:
i. An azodye
ii. Prontosil
iii. Sulphapyridine
iv. Sulphanilamide
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 11
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 12

Question 39.
Draw the general structure of penicillin.
Answer:
General structure of penicillin:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 13

Question 40.
Draw the structure of chloramphenicol.
Answer:
Structure of chloramphenicol:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 14

Question 41.
Give classification of antibiotics.
Answer:
Antibiotics can be of three types, which are as given below:

  • Broad spectrum antibiotics: They are effective against wide range of bacteria.
  • Narrow spectrum antibiotics: They are effective against one group of bacteria.
  • Limited spectrum antibiotics: They are effective against a single organism.

[Note: Antibiotics can be synthetic, semisynthetic or of microbial origin.]

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 42.
State the disadvantage of broad spectrum antibiotics.
Answer:
The disadvantage of broad spectrum antibiotics is that they also kill the useful bacteria in the alimentary canal.

Question 43.
Complete the following table.

PlantMedicinal propertyActive ingredient
CinnamonAntimicrobial for cold————
————————Eugenol
Citrus fruitsAntioxidant————
Wintergreen————————
Indian gooseberry (amla)Antidiabetic, antimicrobial, antioxidantVitamin C, Gallic acid

Answer:

PlantMedicinal propertyActive ingredient
CinnamonAntimicrobial for coldCinnamaldehyde
CloveAntimicrobial and analgesicEugenol
Citrus fruitsAntioxidantVitamin C (ascorbic acid)
WintergreenAnalgesicMethyl salicylate
Indian gooseberry (amla)Antidiabetic, antimicrobial, antioxidantVitamin C, Gallic acid

Question 44.
Draw the structures of following:
i. Curcumin
ii. Methyl salicylate
iii. Cinnamaldehyde
iv. Eugenol
v. Vitamin C
vi. Gallic acid
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 15
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 16
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 17

Question 45.
What are cleansing agents?
Answer:
Cleansing agents are substances which are used to remove stain, dirt or clutter on surfaces.

Question 46.
What are the different types of cleansing agents?
Answer:
Commercially cleansing agents are of the following two main types, depending on their chemical composition:

  • Soaps
  • Synthetic detergents

[Note: Cleansing agents may be natural or synthetically developed.]

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 47.
What are soaps? How soaps are prepared?
Answer:
Soaps:
i. Soaps are sodium or potassium salts of long chain fatty acids.
ii. They are obtained by alkaline hydrolysis of natural oils and fats with NaOH or KOH. This is called saponification reaction.
iii. Chemically, oils are triesters of long chain fatty acids and propane-1,2,3-triol (commonly known as glycerol or glycerin).
iv. Saponification of oil produces soap and glycerol as shown in the reaction below:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 18

Question 48.
Give reason: Potassium soaps can be used for bathing purpose.
Answer:

  • The quality of soap depends upon the nature of oil and alkali used.
  • Potassium soaps (toilet soaps) are prepared by using better grades of oil and KOH. Therefore, they are soft to skin.
  • Also, care is taken to remove excess of alkali which may otherwise cause skin irritation.

Hence, potassium soaps can be used for bathing purpose.

Question 49.
Laundry soaps are made using which alkali?
Answer:
Laundry soaps are made using alkali NaOH (sodium hydroxide).

Question 50.
Give examples of fillers used in making of laundry soaps.
Answer:
Laundry soaps contain fillers like sodium rosinate (a lathering agent), sodium silicate, borax, sodium and trisodium phosphate.

Question 51.
Explain why soaps become inactive in hard water.
Answer:
i. Soaps form scum in hard water and become inactive.
ii. This is because, hard water contains dissolved salts of calcium and magnesium. Soaps react with these salts to form insoluble calcium and magnesium salts of fatty acids.
iii. This insoluble substance is termed as scum which sticks to the fabric.
iv. Reaction of soap with calcium salt (CaCl2) from hard water is given below:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 19

Question 52.
Which chemical can be used for softening of hard water? Why?
Answer:

  • Washing soda (Na2CO3) can be used for softening of hard water.
  • This is because, washing soda precipitates the dissolved calcium salts as carbonate and helps the soap action by softening of water.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 53.
i. What are synthetic detergents?
ii. Mention their different types.
Answer:
i. Synthetic detergents are manmade cleansing agents designed to use in soft water as well as in hard water.
ii. There are three types of synthetic detergents which are as follows:

  • Anionic detergents
  • Cationic detergents
  • Nonionic detergents

Question 54.
Complete the following table:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 20
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 21

Question 55.
Give an example of detergent used as:
i. Additive in toothpaste
ii. Used as germicide
Answer:
i. Additive in toothpaste: Sodium lauryl sulphate, CH3(CH2)10CH2O\(\mathrm{SO}_{3}^{-}\)Na+
ii. Used as germicide: Ethyltrimethylammonium bromide, [CH3(CH5)15 – N+(CH3)3]Br.

Question 56.
Explain cleansing mechanism of soaps and detergents.
Answer:
i. Soaps and detergents bring about cleansing of dirty, greasy surfaces by the same mechanism.
ii. Dirt is held at the surface by means of oily matter, and therefore cannot get washed with water.
iii. The molecules of soaps and detergent have two parts. One part is polar called head and the other part is long nonpolar chain of carbons called tail.
iv. The hydrophilic polar head can dissolve in water which is a polar solvent, while the hydrophobic nonpolar tail dissolve in oil/fat/grease.
v. The molecules of soap/detergent are arranged around the oily droplet such that the nonpolar tail points towards the central oily drop while the polar head is directed towards the water.
vi. Thus, micelles of soap/detergent are formed surrounding the oil drops, which are removed in the washing process.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 22

Question 57.
Compound “X” having the following structure is used as synthetic antioxidant to increase the shelf life of packed foods.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 23
i. What is the molecular formula of compound “X”?
ii. Identify the structural unit responsible for antioxidant activity of “X”.
iii. Give one example of a compound with structure, similar to compound “X”, which is commonly used as synthetic antioxidant.
iv. Give the IUPAC name of compound “X”.
Answer:
i. Molecular formula: C11H16O2
ii. Structural unit responsible for antioxidant activity of compound “X” is phenolic -OH group.
iii. Butylated hydroxytoluene (BHT) is commonly used synthetic antioxidant similar to compound “X”.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 24
iv. The IUPAC name of compound “X” is 2-tert-butyl-4-methoxyphenol.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Multiple Choice Questions

1. BHT as a food additive act as …………….
(A) antioxidant
(B) flavouring agent
(C) colouring agent
(D) emulsifier
Answer:
(A) antioxidant

2. The structure of antioxidant BHT is …………….
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 25
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 26
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 27

3. The molecular formula of aspirin is …………….
(A) C8H8O3
(B) C9H8O4
(C) C9H10O4
(D) C9H8O3
Answer:
(B) C9H8O4

4. Aspirin is a/an …………….
(A) antibiotic
(B) analgesic
(C) antimicrobial
(D) disinfectant
Answer:
(B) analgesic

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

5. The CORRECT structure of the drug paracetamol is …………….
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 28
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 29

6. Which of the following is used as a weak antiseptic for eyes?
(A) Tincture of iodine
(B) Dilute solution of dettol
(C) Iodoform
(D) Dilute aqueous solution of boric acid
Answer:
(D) Dilute aqueous solution of boric acid

7. The structure of thymol is …………….
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 30
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 31

8. Salvarsan is arsenic containing drug which was first used for the treatment of …………….
(A) syphilis
(B) typhoid
(C) ulcer
(D) dysentery
Answer:
(A) syphilis

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

9. The linkage present in salvarsan is …………….
(A) -N = N –
(B) – As = As –
(C) -S – S –
(D) – O – O –
Answer:
(B) – As = As –

10. Which of following contains – N = N – in its structure?
(A) Chloramphenicol
(B) Sulphapyridine
(C) Salvarsan
(D) Prontosil
Answer:
(D) Prontosil

11. Which of the following contains – As = As – linkage?
(A) Salvarsan
(B) Prontosil
(C) Sulphanilamide
(D) Sulphapyridine
Answer:
(A) Salvarsan

12. Which of the following element is NOT present in penicillin?
(A) O
(B) S
(C) P
(D) N
Answer:
(C) P

13. Methyl salicylate having analgesic properties is obtained from which of the following plant?
(A) Clove
(B) Indian gooseberry
(C) Wintergreen
(D) Cinnamon
Answer:
(C) Wintergreen

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

14. Hydrolysis of oil by aqueous alkali is called …………….
(A) esterification
(B) saponification
(C) acetylation
(D) carboxylation
Answer:
(B) saponification

15. Sodium lauryl sulphate is an example of …………….
(A) soap
(B) cationic detergent
(C) anionic detergent
(D) nonionic detergent
Answer:
(C) anionic detergent

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Balbharti Maharashtra State Board 11th Chemistry Important Questions Chapter 15 Hydrocarbons Important Questions and Answers.

Maharashtra State Board 11th Chemistry Important Questions Chapter 15 Hydrocarbons

Question 1.
What are unsaturated and saturated hydrocarbons?
Answer:
Hydrocarbons that contain carbon-carbon multiple bonds (C=C or C≡C) are called unsaturated hydrocarbons, whereas those which contain carbon-carbon single bond (C-C) are called saturated hydrocarbons.

Question 2.
How are hydrocarbons classified?
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 1

Question 3.
Define alkanes. Write general formula of alkanes.
Answer:

  1. Alkanes are aliphatic saturated hydrocarbons containing carbon-carbon and carbon-hydrogen single
    covalent bonds.
  2. They have a general formula CnH2n+2 where, ‘n’ stands for number of carbon atoms in the alkane molecule.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 4.
Give information about isomerism in alkanes. Write the all possible structural isomers of a saturated hydrocarbon containing four carbon atoms along with their IUPAC names.
Answer:
i. Alkanes with more than three carbon atoms generally exhibit, structural isomerism and in particular, the chain isomerism.
ii. The number of possible structural isomers increase rapidly with the number of carbon atoms.
iii. Structural isomers of a saturated hydrocarbon containing four carbon atoms along with their IUPAC names.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 2

Question 5.
Write all the possible structural isomers of a saturated hydrocarbon having molecular formula C5H12.
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 3

Question 6.
Define sigma bond.
Answer:
A single covalent bond formed by the coaxial overlap of orbitals is called sigma (σ) bond.

Question 7.
i. Why do C – C bonds in alkanes undergo rotation?
ii. What are conformations?
Answer:
i. a. Alkanes have single covalent bonds (sigma bonds) formed by the coaxial overlap of orbitals.
b. As a direct consequence of coaxial overlap of orbitals, a sigma bond is cylindrically symmetrical and the extent of orbital overlap is unaffected by rotation about the single bond and therefore, C – C bonds undergo rotation.

ii. a. In alkanes, the atoms bonded to one carbon of a C – C single bond change their relative position with reference to the atoms on the other carbon of that bond on rotation of that C – C single bond.
b. The resulting arrangements of the atoms in space about the C – C single bond are called conformations or conformational isomers. Innumerable conformations result on complete rotation of a C – C single bond through 360°.

Question 8.
i. What is conformational isomerism?
ii. Name the two extreme conformations shown by ethane molecule.
Answer:
i. The phenomenon of existence of conformation is a type of stereoisomerism and is known as conformational isomerism.
ii. Ethane molecule shows the following two extreme conformations:

  • Staggered conformation
  • Eclipsed conformation

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 9.
Draw structures representing staggered and eclipsed conformations of ethane using:
i. Sawhorse projection
ii. Newman projection
Answer:
i. Sawhorse projection of ethane:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 4

ii. Newman projection of ethane:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 5

Question 10.
How are alkanes obtained from crude oil?
Answer:
Alkanes are obtained by fractional distillation of crude oil in oil refineries.

Question 11.
How are alkanes obtained from alkenes and alkynes?
OR
How are alkanes obtained from catalytic hydrogenation of alkenes and alkynes?
Answer:
i. Catalytic hydrogenation of alkenes or alkynes with dihydrogen gas gives corresponding alkanes.
ii. Finely divided powder of platinum (Pt) or palladium (Pd) catalyse the hydrogenation of alkenes and alkynes at room temperature.
iii. Relatively high temperature and pressure are required with finely divided nickel as the catalyst.
e.g. a. Propene to propane:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 6
b. Ethyne to ethane:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 7

Question 12.
Write the general reactions for the catalytic hydrogenation of alkenes and alkynes.
Answer:
General reaction for catalytic hydrogenation of alkenes:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 8
General reaction for catalytic hydrogenation of alkynes:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 9

Question 13.
Write the structures of alkenes that on catalytic hydrogenation give n-butane.
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 10

Question 14.
Explain the preparation of alkanes by reduction of alkyl halides with the help of an example.
Answer:
i. Alkanes can be prepared by reduction of alkyl halides using zinc and dilute hydrochloric acid.
ii. The reduction of alkyl halides is due to nascent hydrogen obtained from the reaction between reducing agent Zn and dilute HCl.
e.g. Reduction of methyl iodide to methane.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 11

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 15.
How are alkanes obtained by Wurtz reaction?
Answer:
Alkyl halides on treatment with reactive sodium metal in dry ether, gives higher alkanes having double the number of carbon atoms. This is called as Wurtz coupling reaction.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 12

Question 16.
How will you convert ethyl chloride into n-butane?
Answer:
Ethyl chloride on heating with sodium metal in presence of dry ether gives n-butane.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 13

Question 17.
Write chemical equations for reactions that take place on treating ethereal solutions of:
i. Methyl iodide with sodium metal
ii. Ethyl iodide with sodium metal
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 14

Question 18.
Explain the preparation of Grignard reagents.
OR
What is Grignard reagent? Explain its preparation.
Answer:
Grignard reagent are alkyl magnesium halides obtained by treating alkyl halides with dry magnesium metal in the presence of dry ether.

General Reaction:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 15

Question 19.
State the action of water on methyl magnesium bromide in dry ether with the help of a chemical reaction.
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 16

Question 20.
Write the reagents involved in the following conversions.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 17
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 18

Question 21.
Straight chain alkanes have higher melting and boiling points as compared to branched isomeric alkanes. Give reason.
Answer:
i. The electronegativity of carbon and hydrogen is nearly the same. Therefore, C-H and C-C bonds are nonpolar covalent bonds and hence, alkanes are nonpolar.
ii. Alkane molecules are held together by weak intermolecular van der Waals forces.
iii. Larger the surface area of molecules, stronger are such intermolecular van der Waals forces.
iv. In straight chain alkane molecules, surface area is relatively larger as compared to branched chain alkanes and as a result, the intermolecular forces are relatively stronger in straight chain alkanes than in branched chain alkanes.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 19
Hence, straight chain alkanes have higher melting and boiling points as compared to branched alkanes.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 22.
State physical properties of alkanes.
Answer:

  • Alkanes are colourless and odourless.
  • At room temperature, the first four alkanes are gases, alkanes having 5 to 17 carbon atoms are liquids while the rest all are solids.
  • Alkanes are readily soluble in organic solvents such as chloroform, ether or ethanol while they are insoluble in water.
  • Alkanes have low melting and boiling points which increases with an increase in the number of carbon atoms for straight chain molecules. But for branched chain molecules, more the number of branches, lower is the boiling/melting point.

Note: [Melting and boiling points of alkanes]
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 20

Question 23.
Define substitution reactions.
Answer:
The reactions in which an atom or group of atoms in a molecule is replaced by another atom or group of atoms is called as substitution reactions.
e.g. Halogenation of alkanes.

Question 24.
i. What is halogenation of alkanes?
ii. Write the order of reactivity of halogens towards alkanes.
Answer:
i. Substitution of H atoms of alkanes by X (halogen, X = Cl, Br, I and F) atom is called halogenation of alkanes.
ii. The reactivity of halogens toward alkanes follows the order: F2 > Cl2 > Br2 > I2
[Note: The ease of replacement of hydrogen atoms from the carbon in alkanes is in the order: 3 > 2 > 1.]

Question 25.
Explain reactions involved in chlorination of methane.
Answer:
Alkanes react with chlorine gas in presence of UV light or diffused sunlight or at a high temperature (573-773 K) to give a mixture of alkyl halides.

Chlorination of methane:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 21
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 22
Tetrachloromethane is a major product when excess of chlorine is used. Chloromethane is obtained as major product when excess of methane is employed.

Question 26.
Predict the products in the following set of reactions.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 23
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 24

Question 27.
What is the action of Cl2 and Br2 on 2-methylpropane?
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 25
[Note: In bromination, there is high degree of selectivity as to which hydrogen atoms are replaced.]

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 28.
Explain mechanism of halogenation of alkanes.
Answer:
i. Halogenation of alkanes follows the free radical mechanism.
ii. Homolysis of halogen molecule (X2) generates halogen atoms, i.e., halogen free radicals.
iii. The mechanism of the first step of chlorination of methane is shown below:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 26

Question 29.
Why are alkanes used as fuels?
Answer:
On heating in the presence of air or dioxygen, alkanes are completely oxidized to carbon dioxide and water with the evolution of a large amount of heat. Hence, alkanes are used as fuels.

Question 30.
What is combustion of alkanes? Write a general equation for alkane combustion.
Answer:
On heating in the presence of air or dioxygen, alkanes are completely oxidized to carbon dioxide and water with the evolution of a large amount of heat. This is known as combustion reaction of alkanes.

General representative equation for combustion is:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 27

Question 31.
Write chemical equations for combustion of butane and methane.
Answer:
i. Combustion of butane:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 28
ii. Combustion of methane:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 29

Question 32.
Write a short note on pyrolysis of alkanes.
Answer:
Alkanes on heating at higher temperature in absence of air decompose to lower alkanes, alkenes and hydrogen, etc. This is known as pyrolysis or cracking.
e.g. Pyrolysis of hexane
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 30

Question 33.
Explain aromatization reaction of alkanes. Give its one application.
Answer:
i. Straight chain alkanes containing 6 to 10 carbon atoms are converted to benzene and its homologues, on heating under 10 to 20 atm pressure at about 773 K in the presence of V2O5, Cr2O3, MO2O3, etc. supported over alumina.

ii. The reaction involves simultaneous dehydrogenation and cyclization. This reaction is known as aromatization or reforming.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 31
This process is used in refineries to produce high quality gasoline which is used in automobiles as fuel.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 34.
Collect the information on CNG and LPG with reference to the constituents and the advantages of CNG over LPG.
Answer:
Constituents of CNG (Compressed Natural Gas):
It mainly consists of methane compressed at a pressure of 200-248 bar.
Constituents of LPG (Liquefied Petroleum Gas):
It contains a mixture of propane and butane liquefied at 15°C and a pressure of 1.7 – 7.5 bar.

Advantages of CNG over LPG:

  • CNG is cheaper and cleaner than LPG.
  • CNG produces less pollutants than LPG.
  • It does not evolve gases containing sulphur and nitrogen.
  • Octane rating of CNG is high, hence thermal efficiency is more.
  • Vehicles powered by CNG produces less carbon monoxide and hydrocarbon emission.

[Note: Students are expected to collect additional information on their own.]

Question 35.
Write the uses of alkane.
Answer:
Uses of alkanes:

  • First four alkanes are used as a fuel mainly for heating and cooking purpose. For example, LPG and CNG.
  • CNG, petrol and diesel are used as fuel for automobiles.
  • Lower liquid alkanes are used as solvent.
  • Alkanes with more than 35 C atoms (tar) are used for road surfacing.
  • Waxes are high molecular weight alkanes. They are used as lubricants. They are also used for the preparation of candles and carbon black that is used in manufacture of printing ink, shoe polish, etc.

Question 36.
i. Write the general molecular formula of alkenes.
ii. Why are alkenes also known as olefins?
Answer:
i. Alkenes have general formula CnH2n, where, n = 2,3,4… etc.
ii. Alkenes are also known as olefins because the first member ethene/ethylene reacts with chlorine to form oily substance.
[Note: Alkenes with one carbon-carbon double bond, contain two hydrogen atoms less than the corresponding alkanes.]

Question 37.
Define alkadienes and alkatrienes. Give one example for each.
Answer:
i. The aliphatic unsaturated hydrocarbons containing two carbon-carbon double bonds are called as alkadienes.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 32

ii. The aliphatic unsaturated hydrocarbons containing three carbon-carbon double bonds are called as alkatrienes.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 33

Question 38.
Explain structural isomerism in alkenes by giving an example.
Answer:
Alkenes with more than three carbon atoms show structural isomerism.
e.g. Alkene with molecular formula C4H8 is butene. The structural formulae for C4H8 can be drawn in three different ways:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 34

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 39.
Draw structures of chain isomers of butene.
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 35

Question 40.
Draw structures of position isomers of butene.
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 36

Question 41.
Define geometrical isomerism.
Answer:
The isomerism which arises due to the difference in spatial arrangement of atoms or groups about doubly bonded carbon (C=C) atoms is called geometrical isomerism.

Question 42.
Explain geometrical isomerism using a general example.
Answer:
i. If the two atoms or groups bonded to each end of the C=C double bond are different, then the molecule can be represented by two different special arrangements of the groups as follows:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 37
ii. In structure (A), two identical atoms or groups lie on the same side of the double bond.
The geometrical isomer in which two identical or similar atoms or groups lie on the same side of the double bond is called cis-isomer.
iii. In structure (B), two identical atoms or groups lie on the opposite side of the double bond.
The geometrical isomer in which two identical or similar atoms or groups lie on the opposite side of the double bond is called trans-isomer.
iv. Due to different arrangement of atoms or groups in space, these isomers differ in their physical properties like melting point, boiling point, solubility, etc.

Question 43.
i. Define cis- and trans-isomer.
ii. Draw geometrical isomers of but-2-ene.
Answer:
i. a. Cis isomer: The geometrical isomer in which two identical or similar atoms or groups lie on the same side of the double bond is called a cis-isomer.
b. Trans isomer: The geometrical isomer in which two identical or similar atoms or groups lie on the opposite side of the double bond is called a trans-isomer.

ii. Geometrical or cis-trans isomers of but-2-ene are represented as:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 38

Question 44.
State whether the following alkenes can exhibit geometrical (or cis-trans) isomerism or not. Give reason for the answer.
i. CH3 – CH2 – CH2 – CH = CH2
ii. CH3 – CH2 – CH = C(CH3)2
Answer:
Both the alkenes (i) and (ii) cannot exhibit geometrical isomerism, since 1 alkene is a terminal alkene (containing two H-atoms on the same side of the double bond) while the 2nd alkene is a 1,1-disubstituted alkene (containing two identical alkyl groups on the same side of the double bond).

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 45.
Write the general formulae of alkenes which exhibit cis-trans isomerism.
Answer:
Alkenes having the following general formulae exhibit cis-trans isomerism:
RCH=CHR, R1R2C=CR1R3, R1CH=CR1R2, R1CH=CR2R3, R1CH=CHR2 and R1R2C=CR3R4

Question 46.
Draw structures of cis-trans isomers for the following:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 39
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 40
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 41

Question 47.
Which of the following compounds will show geometrical isomerism?
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 42
Answer:
Compounds (III), (IV) and (V) will show geometrical isomerism as they have each of the doubly bonded carbon atoms in their structures, attached to different atoms/groups of atoms.

Question 48.
Alkenes can be obtained from which industrial sources?
Answer:

  1. The most important alkenes for chemical industry are ethene, propene and buta-1,3-diene.
  2. Alkenes containing up to four carbon atoms can be obtained in pure form from the petroleum products.
  3. Ethene is produced from natural gas and crude oil by cracking.

Question 49.
What is β-elimination reaction? Explain in brief.
Answer:
The reactions in which two atoms or groups are eliminated from adjacent carbon atoms are called 1,2-elimination reactions. Since the atom/group is removed from β-carbon atom (β to the leaving group) it is called as β-elimination reaction.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 43
The hybridization of each C in the reactant is sp3 while that in the product is sp2. This means elimination reactions cause change in hybridization state while forming multiple bonds from single bond.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 50.
i. What is dehydrohalogenation reaction?
ii. How is it carried out. Explain with an example.
Answer:
i. a. The reactions in which there is removal of hydrogen (H) atom and halogen (X) atom from adjacent carbon atoms are known as dehydrohalogenation reactions.
b. The carbon carrying X is called α-carbon atom. The hydrogen atom from adjacent carbon called β-carbon atom, is removed and hence, the reaction is known as β-elimination.

ii. When an alkyl halide is boiled with a hot concentrated alcoholic solution of a strong base like KOH or NaOH, alkene is formed with removal of water molecule.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 44
[Note: The ease of dehydrohalogenation of alkyl halides is in the order 3 > 2 > 1.]

Question 51.
State Saytzeff rule.
Answer:
In dehydrohalogenation the preferred product is the alkene that has the greater number of alkyl groups attached to doubly bonded carbon atoms.

Question 52.
Write and explain dehydrohalogenation reaction of 2-chlorobutane.
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 45
In dehydrohalogenation of 2-chlorobutane, but-2-ene (disubstituted alkene) is the preferred product because it is formed faster than but-1-ene (monosubstituted alkene) which is in accordance with Saytzeff rule.

Question 53.
Write the CORRECT order of stability of alkenes with respect to Saytzeff rule.
R CH = CH2, CH2 = CH2, R2C = CH2, R2C = CR2, RCH = CHR, R2C = CHR
Answer:
R2C = CR2 > R2C = CHR > R2C = CH2, RCH = CHR > RCH = CH2 > CH2 = CH2

Question 54.
Explain dehydration reaction of alcohols.
Answer:
i. Alcohols on heating with sulphuric acid form alkenes with elimination of water molecule. The reaction is known as catalysed dehydration of alcohols.
ii. The exact conditions of dehydration depend upon the alcohol.
iii. Dehydration of alcohol is an example of β-elimination since -OH group from α-carbon along with H-atom from β-carbon is removed.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 46
The ease of dehydration of alcohol is in the order 3° > 2° > 1°.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 55.
Write dehydration reaction of 1°, 2° and 3° alcohols giving one example for each.
Answer:
The ease of dehydration of alcohols is in the order 3° > 2° > 1°.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 47
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 48

Question 56.
Explain isomerism with structure in the product obtained by acid catalysed dehydration of pentan-2-ol.
Answer:
i. Pentan-2-ol on acid catalysed dehydration, forms the following isomers.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 49
ii. A and B are position isomers.
iii. Pent-2-ene has the following geometrical isomers:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 50

Question 57.
What is dehalogenation? Write the general reaction for dehalogenation of vicinal dihalides.
Answer:
i. Removal of two halogen atoms from adjacent carbon atoms is called dehalogenation.
ii. The dihalides of alkane in which two halogen atoms are attached to adjacent carbon atoms are called vicinal dihalides.
iii. Vicinal dihalides on heating with zinc metal form an alkene.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 51

Question 58.
How is propene obtained by dehalogenation reaction?
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 52

Question 59.
How are geometrical isomers of alkenes obtained from alkynes?
Answer:
Alkenes are obtained by partial reduction of alkynes wherein C = C triple bond of alkynes is reduced to a C = C double bond by:
i. using calculated quantity of dihydrogen in presence of Lindlar’s catalyst (palladised charcoal deactivated partially with quinoline or sulphur compound) to give the cis-isomer of alkene.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 53
ii. using sodium in liquid ammonia to give trans-isomer of alkene.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 54

Question 60.
Write physical properties of alkenes.
Answer:

  • Alkenes are nonpolar or weakly polar compounds that are insoluble in water, and soluble in nonpolar solvents like benzene, ether, chloroform.
  • They are less dense than water.
  • The boiling point of alkene rises with increasing number of carbons.
  • Branched alkenes have lower boiling points than straight chain alkenes.
  • The boiling point of alkene is very nearly the same as that of alkane with the same carbon skeleton.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 61.
Arrange the following alkenes in increasing order of their boiling points.
But-1-ene, 2,3-dimethylbut-2-ene, 2-methylpropene, propene, 2-methylbut-2-ene.
Answer:
Propene < 2-methylpropene < but-1-ene < 2-methylbut-2-ene < 2,3-dimethylbut-2-ene.
Note: Melting points and boiling points of alkenes.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 55

Question 62.
What kind of reactions do alkenes undergo? Give reason.
Answer:
Alkenes undergo electrophilic addition reactions since they are unsaturated and contain pi (π) electrons.

Question 63.
Write a note on halogenation of alkenes.
OR
Explain the formation of vicinal dihalides from alkenes with the help of examples.
Answer:
Alkenes are converted into the corresponding vicinal dihalides by addition of halogens (X2 = Cl2 or Br2).
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 56
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 57

Question 64.
How is carbon-carbon double bond in a compound detected by bromination?
Answer:
When an alkene like ethene is treated with bromine in presence of CCl4, the red-brown colour of bromine disappears due to following reaction.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 58
Hence, decolourisation of bromine is used to detect the presence of C = C bond in unknown compounds.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 65.
Explain the formation of alkyl halides from alkenes.
Answer:
i. Alkenes react with hydrogen halides (HX) like hydrogen chloride, hydrogen bromide and hydrogen iodide to give corresponding alkyl halides (haloalkanes). This reaction is known as hydrohalogenation of alkenes.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 59
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 60
ii. The order of reactivity of halogen acids is HI > HBr > HCl.

Question 66.
State Markovnikov’s rule and explain it with the help of an example.
Answer:
i. Markovnikov’s rule: When an unsymmetrical reagent is added to an unsymmetrical alkene, the negative part (X-) of the reagent gets attached to the carbon atom which carries less number of hydrogen atoms.
ii. For example, addition of HBr to unsymmetrical alkenes yield two isomeric products.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 61
iii. Experimentally it has been found that 2-Bromopropane is the major product.
[Note: Addition of HBr to symmetrical alkenes yields only one product.]

Question 67.
Explain Anti-Markovnikov’s addition or peroxide effect or Kharasch-Mayo effect.
Answer:
In 1933, M. S. Kharasch and F. R. Mayo discovered that the addition of HBr to unsymmetrical alkene in the presence of organic peroxide (R-O-O-R) takes place in the opposite orientation to that suggested by Markovnikov’s rule.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 62
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 63

Question 68.
Write the structure of major alkyl halide obtained by the action of HCl on pent-1-ene
i. in presence of peroxide
ii. in absence of peroxide.
Answer:
The structures of alkyl halides obtained by the action of hydrogen bromide on pent-1-ene are as follows:
i. In presence of peroxide:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 64
ii. In absence of peroxide:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 65
[Note: Presence/absence of peroxide has no effect on addition of HCl or HI.]

Question 69.
Explain the formation of alcohols from alkenes using conc. sulphuric acid with the help of an example.
Answer:
i. Alkenes react with cold concentrated sulphuric acid to form alkyl hydrogen sulphate (ROSO3H). The addition takes place according to Markovnikov’s rule as shown in the following steps.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 66
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 67
ii. If alkyl hydrogen sulphate is diluted with water and heated, then an alcohol having the same alkyl group as the original alkyl hydrogen sulphate is obtained.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 68
iii. This is an excellent method for the large-scale manufacture of alcohols.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 70.
What is hydration of alkenes?
Answer:
i. Reactive alkenes on adding water molecules in the presence of concentrated sulphuric acid, form alcohol.
ii. The addition of water takes place according to Markovnikov’s rule. This reaction is known as hydration of alkenes.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 69

Question 71.
Complete the following conversion.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 70
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 71

Question 72.
But-1-ene and 2-methylpropene are separately treated with following reagents. Predict the product/products. Indicate major/minor product,
i. HBr
ii. H2SO4 / H2O
Answer:
i. HBr:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 72
ii. H2SO4 / H2O:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 73

Question 73.
Explain: Ozonolysis
Answer:
i. The C = C double bond in alkenes, gets cleaved on reaction with ozone followed by reduction.
ii. The overall process of formation of ozonide by reaction of ozone with alkene in the first step and then decomposing it to the carbonyl compounds by reduction in the second step is called ozonolysis.
iii. When ozone gas is passed into solution of the alkene in an inert solvent like carbon tetrachloride, unstable alkene ozonide is obtained.
iv. This is subsequently treated with water in the presence of a reducing agent zinc dust to form carbonyl compounds, namely, aldehydes and/or ketones.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 74

Question 74.
Write reactions for the ozonolysis of the following alkenes:
i. Ethene
ii. Propene
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 75

Question 75.
What is the role of zinc dust, in ozonolysis reaction?
Answer:
In ozonolysis, the role of zinc dust is to prevent the formation of hydrogen peroxide which oxidizes aldehydes to corresponding acids.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 76.
State TRUE or FALSE. If false, correct the statement.
i. In the cleavage products of ozonide, a carbonyl group (C=O) is formed at each of the original doubly bonded carbon atoms.
ii. In ozonolysis, the structure of original alkene reactant cannot be identified by knowing the number and arrangement of carbon atoms in aldehydes and ketones produced.
iii. Ozonolysis reaction is used to locate the position and determine the number of double bonds in alkenes.
Answer:
i. True
ii. False
In ozonolysis, knowing the number and arrangement of carbon atoms in aldehydes and ketones produced, we can identify the structure of original alkene.
iii. True

Question 77.
Identify the alkene which produces a mixture of methanal and propanone on ozonolysis. Write the reactions involved.
Answer:
i. The structure of alkene which produces a mixture of methanol and propanone on ozonolysis is
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 76

ii. Reactions:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 77

Question 78.
Explain the process of hydroboration-oxidation of alkenes.
Answer:
i. Alkenes with diborane in tetrahydrofuran (THF) solvent undergo hydroboration to form trialkylborane, which on oxidation with alkaline peroxide forms primary alcohol.
ii. The overall reaction gives anti-Markovnikov’s product from unsymmetrical alkenes.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 78

Question 79.
Write reactions for the following conversion by hydroboration-oxidation reaction.
Ethene to ethanol
Answer:
Ethene to ethanol:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 79

Question 80.
Define: Polymerization
Answer:
The process in which large number of small molecules join together and form very large molecules with repeating units is called polymerization.

Question 81.
What is the difference between monomer and polymer?
Answer:
The compound having very large molecules made of large number of repeating small units is called polymer while the simple compound forming the repeating units in the polymer is called monomer.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 82.
How is ethene converted to polyethene?
Answer:
Ethene at high temperature and under high pressure interacts with oxygen, and undergoes polymerization giving high molecular weight polymer called polyethene.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 80
Here, n represents the number of repeating units and is a large number.

Question 83.
Explain the process of hydroxylation of alkenes.
OR
What is the action of alkaline KMnO4 on alkenes?
Answer:
Alkenes react with cold and dilute alkaline potassium permanganate to form glycols.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 81

Question 84.
Explain Baeyer’s test giving one example.
Answer:
i. During hydroxylation of alkenes the purple colour of KMnO4 disappears.
ii. Hence, such reaction serves as a qualitative test for detecting the presence of double bond in the sample compound. This is known as Baeyer’s test.
e.g. As propene contains a double bond, it reacts with alkaline KMnO4 to give colourless propane-1,2-diol as product. Therefore, the purple colour of alkaline KMnO4 disappears.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 82

Question 85.
What is the action of following reagents on but-1-ene and but-2-ene?
i. Bromine
ii. Cold and dilute alkaline KMnO4.
Answer:
i. Action of Br2:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 83
ii. Action of cold and dilute alkaline KMnO4:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 84

Question 86.
Describe the action of acidic potassium permanganate on alkenes.
Answer:
Acidic potassium permanganate or acidic potassium dichromate oxidizes alkenes to ketones or acids depending upon the nature of the alkene and the experimental conditions. This is called oxidative cleavage of alkenes.
e.g.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 85

Question 87.
Complete the following conversions.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 86
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 87

Question 88.
State some important uses of alkenes.
Answer:

  • Alkenes are used as starting materials for preparation of alkyl halides, alcohols, aldehydes, ketones, acids, etc.
  • Ethene and propene are used to manufacture polythene, polypropylene which are used in polyethene bags, toys, bottles, etc.
  • Ethene is used for artificial ripening of fruits, such as mangoes.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 89.
What are alkynes? Write their general formula.
Answer:

  • Alkynes are aliphatic unsaturated hydrocarbons containing at least one C = C.
  • Their general formula is CnH2n-2.

Question 90.
Explain position isomerism in alkyne.
Answer:
Alkynes show position isomerism which is a type of structural isomerism.
e.g. But-1-yne and but-2-yne, both are represented by C4H6, however, both of them differ in position of triple bond in them.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 88
[Note: 1-Alkynes are also called terminal alkynes.]

Question 91.
Draw the structural isomers of isomers of C5H8. Identify position isomers amongst them.
Answer:
i. Structural isomers of C5H10 (fourth member of homologous series of alkynes):
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 89
ii. The compounds pent-1-yne and pent-2-yne are position isomers of each other.

Question 92.
What are alkadiynes and alkatriynes? Give one example of each.
Answer:
The aliphatic unsaturated hydrocarbons containing two and three carbon-carbon triple bonds in their structure are called alkadiynes and alkatriynes, respectively.
e.g. CH ≡ C – CH2 – C ≡ CH
Alkadiyne (Penta-1,4-diyne)

HC ≡ C- C ≡ C- C ≡ CH
Alkatriyne (Hexa-1,3,5-triyne)

Question 93.
Complete the following table:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 90
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 91

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 94.
How is acetylene prepared from the following compounds?
i. Methane
ii. Calcium carbide
Answer:
i. From methane: Ethyne is industrially prepared by controlled, high temperature, partial oxidation of methane.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 92
ii. From calcium carbide: Industrially, ethyne is prepared by reaction of calcium carbide with water.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 93

Question 95.
How are alkynes prepared by dehydrohalogenation of vicinal dihalides? Write general reaction and explain it using an example.
Answer:
Vicinal dihalides react with alcoholic solution of potassium hydroxide to form alkenyl halide which on further treatment with sodamide forms alkyne.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 94

Question 96.
Convert 1,2-dichloropropane to propyne.
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 95

Question 97.
i. What are terminal alkynes?
ii. How are they converted to higher nonterminal alkynes? Give one example.
Answer:
i. Terminal alkynes are the compounds in which hydrogen atom is directly attached to triply bonded carbon atom.
ii. a. A smaller terminal alkyne first reacts with a very strong base like lithium amide to form metal acetylide (lithium amide is easier to handle than sodamide).
b. Higher alkynes are obtained by reacting metal acetylides (alkyn-1-yl lithium) with primary alkyl halides.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 96
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 97

Question 98.
How is pent-2-yne prepared from propyne?
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 98

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 99.
Enlist physical properties of alkenes.
Answer:
The physical properties of alkynes are similar to those of alkanes and alkenes.

  • They are less dense than water.
  • They are insoluble in water and quite soluble in less polar organic solvents like ether, benzene, carbon tetrachloride.
  • The melting points and boiling points of alkynes increase with an increase in molecular mass.

Question 100.
Lithium amide (LiNH2) is very strong base and it reacts with terminal alkynes to form lithium acetylides with the liberation of hydrogen indicating acidic nature of terminal alkynes. Why is it so?
Answer:

  • The hydrogen bonded to C ≡ C triple bond has acidic character.
  • In terminal alkynes, hydrogen atom is directly attached to sp hybridized carbon atom.
  • In sp hybrid orbital, the percentage of s-character is 50%. An electron in s-orbital is very close to the nucleus and is held tightly.
  • The sp hybrid carbon atom in terminal alkynes is more electronegative than the sp2 carbon in ethene or the sp3 carbon in ethane.
  • Due to high electronegative character of carbon in terminal alkynes, hydrogen atom can be given away as proton (H+) to very strong base.

Question 101.
Give reason: Acidic nature of alkynes is used to distinguish between terminal and non-terminal alkynes.
Answer:

  • Acidic alkynes react with certain heavy metal ions like Ag+ and Cu+ and form insoluble acetylides.
  • On addition of acidic alkyne to the solution of AgNO3 in alcohol, it forms a precipitate, which indicates that the hydrogen atom is attached to triply bonded carbon.

Hence, this reaction is used to differentiate terminal alkynes and non-terminal alkynes.

Question 102.
Predict the product in the following reactions.
\(\mathbf{H C} \equiv \mathbf{C H}+\mathbf{2 B r}_{2} \stackrel{\mathrm{CCl}_{4}}{\longrightarrow} ?\)
Answer:
Ethyne reacts with bromine in inert solvent such as carbon tetrachloride to give tetrabromoethane.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 99

Question 103.
Write the general reaction for addition of halogens to alkynes.
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 100

Question 104.
Explain the addition of hydrogen halides to alkynes using a general reaction.
Answer:
i. Hydrogen halides (HCl, HBr and HI) add to alkynes across carbon-carbon triple bond in two steps to form geminal dihalides (in which two halogen atoms are attached to the same carbon atom).
ii. The addition of HX in both the steps takes place according to Markovnikov’s rule as shown in below.
General reaction:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 101
iii. The order of reactivity of hydrogen halides is HI > HBr > HCl.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 105.
State the action of HBr on acetylene and methyl acetylene.
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 102

Question 106.
Explain reactions of alkynes with water using general reaction.
Answer:
Alkynes react with water in presence of 40% sulphuric acid and 1% mercuric sulphate to form aldehydes or ketones, i.e., carbonyl compounds.
General reaction:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 103

Question 107.
Predict the products when ethyne and propyne are treated with 1% mercuric sulphate in H2SO4.
Answer:
i. Ethyne:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 104
ii. Propyne:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 105a

Question 108.
Convert:
i. But-1-yne to butan-2-one
ii. Hex-3-yne to hexan-3-one
Answer:
i. But-l-yne to butan-2-one:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 106
ii. Hex-3-yne to hexan-3-one:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 107

Question 109.
What are products obtained on hydration of but-1-yne and but-2-yne? Are they same or different? Explain.
Answer:
i. Hydration of but-1-yne:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 108
Hydration of but-2-yne:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 109
The products obtained on hydration of but-1-yne and but-2-yne are same i.e., butan-2-onc since the addition of water to alkyncs takes place according to Markovnikovs rule.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 110.
How is ethylene converted into ethylidene dichloride?
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 110

Question 111.
Write some important uses of acetylene.
Answer:

  • Ethyne (acetylene) is used in preparation of ethanal (acetaldehyde), propanone (acetone), ethanoic acid (acetic acid).
  • It is used in the manufacture of polymers, synthetic rubber, synthetic fibre, plastic, etc.
  • For artificial ripening of fruits.
  • In oxy-acetylene (mixture of oxygen and acetylene) flame for welding and cutting of metals.

Question 112.
Many organic compounds obtained from natural sources such as resins, balsams, oil of wintergreen, etc. have pleasant fragrance or aroma. Such compounds are named as aromatic compounds.
i. Name the simplest aromatic compound.
ii. Write the names of any two aromatic compounds.
Answer:
i. Benzene is the simplest aromatic hydrocarbon.
ii. Toluene and naphthalene

Question 113.
Draw structures of any four aromatic hydrocarbons.
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 111

Question 114.
Write the molecular formula of benzene. Give its boiling point.
Answer:
The molecular formula for benzene is C6H6. Its boiling point is 353 K.

Question 115.
State TRUE or FALSE. Correct the false statement.
i. Aromatic hydrocarbons are also called as arenes.
ii. Toluene is a non-aromatic hydrocarbon.
iii. Benzene is colourless liquid having characteristic odour.
Answer:
i. True
ii. False
Toluene is an aromatic hydrocarbon.
iii. True

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 116.
Name any two large-scale sources of benzene.
Answer:
Coal-tar and petroleum are the two large-scale sources of benzene.
[Note: Other aromatic compounds like toluene, phenol, naphthalene, etc. are also obtained from coal-tar and petroleum.]

Question 117.
Draw the structure of an aromatic compound that resembles benzene but does not have pleasant odour.
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 112

Question 118.
Name and draw the structures of any three compounds that have pleasant odour but do not resemble benzene.
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 113

Question 119.
Differentiate between aromatic and aliphatic compounds.
Answer:
Aromatic compounds:

  • Aromatic compounds contain higher percentage of carbon.
  • They bum with sooty flame.
  • They are cyclic compounds with alternate single and double bonds.
  • They are not attacked by normal oxidizing and reducing agents.
  • They do not undergo addition reactions easily. They do not decolourise dilute alkaline aqueous KMnO4 and Br2 in CCl4, though double bonds appear in their structure.
  • They prefer substitution reactions.

Aliphatic compounds:

  • Aliphatic compounds contain lower percentage of carbon.
  • They bum with non-sooty flame.
  • They are open chain compounds.
  • They are easily attacked by oxidizing and reducing agents.
  • Unsaturated aliphatic compounds undergo addition reactions easily. They decolourise dilute aqueous alkaline KMnO4 and Br2 in CCl4.
  • The saturated aliphatic compounds give substitution reactions.

Question 120.
Benzene cannot have open chain structure. Explain this statement.
Answer:

  • The molecular formula of benzene is C6H6. This indicates high degree of unsaturation.
  • Open chain or cyclic structure having double and triple bonds can be written for C6H6.
  • However, benzene does not behave like alkenes or alkynes. This indicates that benzene cannot have the open chain structure.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 121.
Compare the reactivity of benzene and alkenes with the following reagents:
i. Dilute alkaline KMnO4
ii. Br6 in CCl4
iii. H6O in acidic medium
Answer:

ReagentAlkenesBenzene
Dilute alkaline aqueous KMnO4Decolourisation of KMnO4No decolourisation
Br2 in CCl4Decolourisation of red brown colour of bromineNo decolourisation
H2O in acidic mediumAddition of H2O moleculeNo reaction

Question 122.
Give the evidence for the cyclic structure of benzene.
Answer:
Evidence for the cyclic structure of benzene:
i. Benzene yields only one and no isomeric monosubstituted bromobenzene (C6H5Br) when treated with equimolar bromine in FeBr3. This indicates that all six hydrogen atoms in benzene are identical.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 114
ii. This is possible only if benzene has cyclic structure of six carbons bound to one hydrogen atom each.
iii. Benzene on catalytic hydrogenation gives cyclohexane.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 115
This confirms the cyclic structure of benzene and three C = C in it.

Question 123.
Write a short note on the Kekule structure of benzene.
Answer:
Kekule structure of benzene:
i. August Kekule in 1865 suggested the structure for benzene having a cyclic planar ring of six carbon atoms with alternate single and double bonds and hydrogen atom attached to each carbon atom.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 116
ii. The Kekule structure indicates the possibility of two isomeric 1,2-dibromobenzenes. In one of the isomers, the bromine atoms would be attached to the doubly bonded carbon atoms whereas in the other, they would be attached to single bonded carbons.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 117
iii. However, benzene was found to form only one ortho-disubstituted benzene. This problem was overcome by Kekule by suggesting the concept of oscillating nature of double bonds in benzene as given below.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 118
iv. Even with this modification, Kekule structure of benzene failed to explain unusual stability and preference to substitution reactions rather than addition reactions, which was later explained by resonance.

Question 124.
Explain the resonance phenomenon with respect to benzene.
OR
Explain the resonance hybrid structure of benzene.
Answer:

  • Benzene is a hybrid of various resonance structures. The two structures, (A) and (B) given by Kekule are the main contributing structures.
  • The resonance hybrid is represented by inserting a circle or a dotted circle inscribed in the hexagon as shown in (C).
  • The circle represents six electrons delocalized over the six carbon atoms of benzene ring.
  • A double headed arrow between the resonance structures is used to represent the resonance phenomenon.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 119

Question 125.
Why does benzene not prefer to undergo addition reactions?
Answer:

  • Benzene is highly unsaturated molecule but despite of this feature, it does not give addition reaction.
  • The actual structure of benzene is represented by the resonance hybrid which is the most stable form of benzene than any of its resonance structures.
  • This stability due to resonance (delocalization of π electrons) is so high that π-bonds of the molecule becomes strong and thus, resist breaking.

Thus, benzene does not prefer to undergo addition reactions.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 126.
Explain the resonance structures of benzene using the orbital overlap concept.
Answer:
The structure of benzene can be better explained by the orbital overlap concept,
i. All six carbon atoms in benzene are sp2 hybridized. Two sp2 hybrid orbitals of each carbon atom overlap and form carbon-carbon sigma (σ) bond and the remaining third sp2 hybrid orbital of each carbon overlaps with s orbital of a hydrogen atom to form six C – H sigma bonds.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 120

ii. The unhybridized p orbitals of carbon atoms overlap laterally forming π bonds. There are two possibilities of forming three π bonds by overlap of p orbitals of C1 – C2, C3 – C4, C5 – C6 or C2 – C3, C4 – C5, C6 – C1, respectively, as shown in the following figure. Both the structures are equally probable.

According to resonance theory, these are two resonance structures of benzene.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 121

Question 127.
Explain the structure of benzene with respect to molecular orbital theory.
Answer:
i. According to molecular orbital (MO) theory, the six p orbitals of six carbons give rise to six molecular orbitals of benzene.
ii. Shape of the most stable MO is as show in the figure below. Three of these π molecular orbitals lie above and the other below those of free carbon atom energies.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 122
iii. The six electrons of the p orbitals cover all the six carbon atoms and are said to be delocalized. Delocalization of π electrons results in stability of benzene molecule.

Question 128.
Give the carbon-carbon bond length in benzene. Explain why benzene shows unusual behaviour.
Answer:
i. X-ray diffraction data indicate that all C – C bond lengths in benzene are equal (139 pm) which is an intermediate between C – C (154 pm) and C = C bond (133 pm).

ii. Thus, absence of pure double bond in benzene accounts for its reluctance to addition reactions under normal conditions, which explains unusual behaviour of benzene.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 123

Question 129.
Write a short note on aromaticity.
Answer:
i. All aromatic compounds undergoes substitution reactions rather than addition reactions and this property is referred to as aromaticity or aromatic character.
ii. The aromatic character of benzene is correlated to its structure.
iii. Aromaticity is due to extensive cyclic delocalization of p electrons in the planar ring structure.
iv. Three rules of aromaticity that is used for predicting whether a particular compound is aromatic or non-aromatic are as follows:

  • Aromatic compounds are cyclic and planar (all atoms in ring are sp2 hybridized).
  • Each atom in aromatic ring has a p orbital. The p orbitals must be parallel so that continuous overlap is possible around the ring.
  • Huckel rule: The cyclic π molecular orbital formed by overlap of p orbitals must contain (4n + 2) p electrons, where n = integer 0, 1, 2, 3, … etc.

Question 130.
State and explain the Huckel rule of aromaticity.
Answer:
Huckel rule: The cyclic π molecular orbital formed by overlap of p orbitals must contain (4n + 2) p electrons, where n = integer 0, 1,2,3, … etc.

Explanation:
According to Huckel rule, a cyclic and planar compound is aromatic if it the number of π electrons is equal to (4n + 2), where n = integer 0, 1, 2, 3, … etc.

nNumber of π electrons
n = 0(4 × 0) – 2 = 2
n = 1(4 × 1) + 2 = 6
n = 2(4 × 2) + 2 = 10

e.g. Consider benzene molecule:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 124
Benzene has 6π electrons. According to Huckel rule, if n = 1, then (4n + 2)π = 6π electrons. Hence, benzene is aromatic.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 131.
By using the rules of aromaticity, explain whether the following compounds are aromatic or non-aromatic.
i. Benzene
ii. Naphthalene
iii. Cycloheptatriene
Answer:
i. Benzene:
a. It is cyclic and planar.
b. It has three double bonds and six π electrons.
c. It has a p orbital on each carbon of the hexagonal ring. Hence, a continuous overlap above and below the ring is possible.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 125
d. According to Huckcl rule, this compound is aromatic if, 4n + 2 = Number of π electrons.
4n + 2 = 6,
∴ 4n = 6 – 2 = 4
n = 4/4 = 1, here, ‘n’ comes out to be an integer.
Hence, benzene is aromatic.

ii. Naphthalene:
a. It is cyclic and planar.
b. It has 5 double bonds and 10 n electrons.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 126
c. It has a p orbital on each carbon atom of the ring. Hence, a continuous overlap around the ring is possible.
d. According to Huckel rule, this compound is aromatic if, 4n + 2 = Number of π electrons.
4n + 2 = 10,
∴ 4n = 10 – 2 = 8
n = 8/4 = 2, Here ‘n’ comes out to be an integer.
Hence, naphthalene is aromatic.

iii. Cycloheptatriene:
a. It is cyclic and planar.
b. It has three double bonds and 6 π electrons.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 127
c. But one of the carbon atoms is saturated (sp3 hybridized) and it does not have a p orbital.
d. Hence, a continuous overlap around the ring is not possible in cycloheptatriene. Hence, it is non-aromatic.

Question 132.
How does Huckel rule help in determining the aromaticity of pyridine?
Answer:
i. Pyridine has three double bonds and 6 π electrons.
ii. The six p orbitals containing six electrons form delocalized π molecular orbital.
iii. The unused sp2 hybrid orbital of nitrogen containing two non-bonding electrons is as it is.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 128
iv. According to Huckel rule, this compound is aromatic if, 4n + 2 = Number of π electrons
4n + 2 = 6,
∴ 4n = 6 – 2 = 4
n = 4/4 = 1, here ‘n’ comes out to be an integer. Hence, pyridine is aromatic.

Question 133.
How is benzene prepared from ethyne/acetylene?
Answer:
From ethyne (By trimerization): Alkynes when passed through a red hot iron tube at 873 K, polymerize to form aromatic hydrocarbons. Ethyne when passed through a red hot iron tube at 873 K undergoes trimerization to form benzene.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 129

Question 134.
How is benzene prepared from sodium benzoate?
OR
Explain preparation of benzene by decarboxylation.
Answer:
From sodium benzoate (by decarboxylation): When anhydrous sodium benzoate is heated with soda lime, it undergoes decarboxylation and gives benzene.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 130
[Note: This reaction is useful for decreasing the length of a carbon chain by one C-atom]

Question 135.
How will you convert phenol to benzene?
Answer:
From phenol (By reduction): When vapours of phenol are passed over heated zinc dust, it undergoes reduction and gives benzene.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 131

Question 136.
Enlist physical properties of benzene.
Answer:
Physical properties of benzene:

  • Benzene is a colourless liquid.
  • Its boiling point is 353 K and melting point is 278.5 K.
  • It is insoluble in water. It forms upper layer when mixed with water.
  • It is soluble in alcohol, ether and chloroform.
  • Its vapours are highly toxic which on inhalation lead to unconsciousness.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 137.
What is the action of chlorine on benzene in the presence of UV light?
Answer:
Addition of chlorine: When benzene is treated with chlorine in the presence of bright sunlight or UV light, three molecules of chlorine gets added to benzene to give benzene hexachloride.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 132

Question 138.
Name the γ-isomer of benzene hexachloride which is used as insecticide.
Answer:
The γ-isomer of benzene hexachloride which is used as insecticide is called as gammaxene or lindane.

Question 139.
How will you convert benzene to cyclohexane?
Answer:
Addition of hydrogen: When a mixture of benzene and hydrogen gas is passed over heated catalyst nickel at 453 K to 473 K, cyclohexane is formed.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 133

Question 140.
What is the action of ozone on benzene?
Answer:
Addition of ozone: When benzene is treated with ozone in the presence of an inert solvent carbon tetrachloride, benzene triozonide is formed, which is then decomposed by zinc dust and water to give glyoxal.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 134

Question 141.
What are the different types of electrophilic substitution reactions of benzene?
Answer:
i. Benzene shows electrophilic substitution reactions, in which one or more hydrogen atoms of benzene ring are replaced by groups like – Cl, – Br, – NO2, – SO3H, -R, -COR, etc.
ii. Different types of electrophilic substitution reactions of benzene are as follows:

  • Halogenation (chlorination and bromination)
  • Nitration
  • Sulphonation
  • Friedel-Craft’s alkylation and
  • Friedel-Craft’s acylation

Question 142.
Write a short note on chlorination reaction of benzene.
Answer:
Chlorination of benzene:
i. In chlorination reaction, hydrogen atom of benzene is replaced by chlorine atom.
ii. Chlorine reacts with benzene in dark in the presence of iron or ferric chloride or anhydrous aluminium chloride or red phosphorus as catalyst to give chlorobenzene (C6H5Cl).
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 135
iii. Electrophile involved in the reaction: Cl+, chloronium ion,
Formation of the electrophile: Cl – Cl + FeCl3 → Cl+ + [FeCl4]

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 143.
Write a short note on bromination reaction of benzene.
Answer:
Bromination of benzene:
i. In bromination reaction, hydrogen atom of benzene is replaced by bromine atom.
ii. Bromine reacts with benzene in dark in presence of iron or ferric bromide or anhydrous aluminium bromide or red phosphorus as catalyst to give bromobenzene (C6H5Br).
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 136
iii. Electrophile involved in the reaction: Br+
Formation of the electrophile: Br – Br + FeBr3 → Br+ + [FeBr4]

Question 144.
Why direct iodination of benzene is not possible?
Answer:
Direct iodination of benzene is not possible as the reaction is reversible.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 137
[Note: Iodination of benzene can be carried out in the presence of oxidising agents like HIO3 or HNO3.]

Question 145.
How will you convert benzene to hexachlorobenzene?
Answer:
When benzene is treated with excess of chlorine in presence of anhydrous aluminium chloride, it gives hexachlorobenzene.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 138

Question 146.
State true or false. Correct the false statement.
i. In halogenation reaction, hydrogen atom of benzene ring is replaced by halogen atom.
ii. The molecular formula of hexachlorobenzene is C6H6Cl6.
iii. Benzene forms the lower layer when mixed with water.
Answer:
i. True
ii. False
The molecular formula of hexachlorobenzene is C6Cl6
iii. False
Benzene forms the upper layer when mixed with water.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 147.
Explain the nitration reaction of benzene.
Answer:
Nitration of benzene:
i. When benzene is heated with a mixture of concentrated nitric acid and concentrated sulphuric acid (nitrating mixture) at about 313 K to 333 K, it gives nitrobenzene.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 139
ii. Electrophile involved in the reaction: \(\mathrm{NO}_{2}^{+}\), nitronium ion
Formation of the electrophile: HO – NO2 + 2H2SO4 ⇌ \(2 \mathrm{HSO}_{4}^{-}\) + H3O+ + \(\mathrm{NO}_{2}^{-}\)

Question 148.
Write a short note on sulphonation of benzene.
Answer:
Sulphonation of benzene:
i. When benzene is heated with fuming sulfuric acid (oleum) at 373 K, it gives benzene sulfonic acid.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 140
ii. Electrophile involved in the reaction: SO3, free sulphur trioxide
Formation of the electrophile: 2H2SO4 → H3O+ + \(\mathrm{HSO}_{4}^{-}\) + SO3

Question 149.
Write a short note on Friedel-Craft’s alkylation reaction of benzene.
Answer:
Friedel-Craft’s alkylation reaction of benzene:
i. When benzene is treated with an alkyl halide like methyl chloride in the presence of anhydrous aluminium chloride, it gives toluene.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 141
ii. Electrophile involved in the reaction: R+
Formation of the electrophile: R – Cl + AlCl3 → R+ + \(\mathrm{AlCl}_{4}^{-}\)
iii. Friedel-Craft’s alkylation reaction is used to extend the chain outside the benzene ring.

Question 150.
Explain Friedel-Craft’s acylation reaction of benzene. Give example reactions.
Answer:
Friedel-craft’s acylation reaction of benzene:
i. When benzene is heated with an acyl halide or acid anhydride in the presence of anhydrous aluminium chloride, it gives corresponding acyl benzene.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 142
ii. Electrophile involved in the reaction: R – C- = O, acylium ion
Formation of the electrophile: R – COCl + AlCl3 → R – C+ = O + \(\mathrm{AlCl}_{4}^{-}\)

Question 151.
Write the general combustion reaction for hydrocarbons.
Answer:
General combustion reaction for any hydrocarbon (CxHy) can be represented as follows:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 143

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 152.
Write the combustion reaction of benzene.
Answer:
When benzene is heated in air, it bums with sooty flame forming carbon dioxide and water.
C6H6 + \(\frac {15}{2}\)O2 → 6CO2 + 3H2O

Question 153.
Write a note on the directive influence of substituents (functional groups) in monosubstituted benzene.
Answer:
i. In benzene, all hydrogen atoms are equivalent and so, when it undergoes electrophilic substitution reactions, only one monosubstituted product is possible.
Monosubstituted benzene:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 144
ii. When monosubstituted benzene undergoes further electrophilic substitution, the second substituent (electrophile, E) can occupy any of the five positions available and give three disubstituted products.
But these disubstituted products are not formed in equal amounts.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 145
iii. The position of second substituent (E) is determined by the nature of substituent (S) already present in the benzene ring and not on the nature of second substituent (E).
iv. The groups which direct the incoming group to ortho and para positions are called ortho and para directing groups. The groups which direct the incoming group to meta positions are called meta directing groups. Thus, depending on the nature of the substituent (S) either ortho and para products or meta products are formed as major products.

Question 154.
What are ortho and para directing groups? Enlist few ortho and para directing groups.
Answer:
The groups which direct the incoming group to ortho and para positions are called ortho and para directing groups.
Ortho and para directing groups:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 146

Question 155.
Explain the directive influence of ortho, para directing groups in monosubstituted benzene using suitable example.
OR
Explain the directive influence of -OH group in benzene.
Answer:
i. The directive influence of ortho, para directing groups can be explained with the help of inductive and resonance effects.
ii. phenol has the following resonating structures:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 147
iii. It can be seen from the above resonating structures, that the ortho (o-) and para (p-) positions have a greater electron density than the meta positions.
iv. Therefore, -OH group activates the benzene ring for the attack of second substituent (E) at these electron rich centres. Thus, phenolic -OH group is activating and ortho, para-directing group.
v. In phenol, -OH group has electron withdrawing inductive (-I) effect which slightly decreases the electron density at ortho positions in benzene ring. Thus, resonance effect and inductive effect of -OH group act opposite to each other. However, the strong resonance effect dominates over inductive effect.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Question 156.
Explain the o, p-directive effect of methyl group.
Answer:

  • All ortho and para directing groups possess nonbonding electron pair on the atom which is directly attached to the aromatic ring; however, methyl group is an exception.
    Methyl (or alkyl groups) is ortho and para directing, although it has no nonbonding electron pair on the key atom. This is explained on the basis of special type of resonance called hyperconjugation or no bond resonance.

Question 157.
Explain why halide group is an ortho and para directing group.
Answer:
i. In aryl halides, halogens are moderately deactivating. Because of their strong -I effect, overall electron density on the benzene ring decreases, which makes the electrophilic substitution difficult.
ii. However, halogens are ortho and para directing. This can be explained by considering resonance structures.
iii. e.g. Chlorobenzene has the following resonating structures:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 148
iv. Due to resonance, the electron density on ortho and para positions is greater than meta positions and hence, -Cl is ortho and para directing.

Question 158.
What are meta directing groups? Enlist few of them.
Answer:
The groups which direct the incoming group to meta positions are called meta directing groups.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 149
[Note: All meta directing groups have positive (or partial positive) charge on the atom which is directly attached to an aromatic ring.]

Question 159.
Explain the directive influence of nitro group in nitrobenzene.
OR
Explain why nitro group is a meta-directing group.
Answer:
i. Meta directing group withdraws electrons from the aromatic ring by resonance, making the ring electron-deficient. Therefore, meta groups are ring deactivating groups.
ii. Due to -I effect, -NO2 group reduces electron density in benzene ring on ortho and para positions. So, the attack of incoming group becomes difficult at ortho and para positions. The incoming group can attack on meta positions more easily.
iii. The various resonance structures of nitrobenzene are as shown below:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 150
iv. It is clear from the above resonance structures that the ortho and para positions have comparatively less electron density than at meta positions. Hence, the incoming group/electrophile attacks on meta positions.

Question 160.
What are polycyclic aromatic compounds? How are they produced?
Answer:

  • Polycyclic aromatic compounds are the hydrocarbons containing more than two benzene rings fused together.
  • They are produced by incomplete combustion of tobacco, coal and petroleum.

Question 161.
Write the harmful effects of benzene.
Answer:

  • Benzene is both, toxic and carcinogenic (cancer causing).
  • In fact, it might be considered “the mother of all carcinogens” as a large number of carcinogens have structures that include benzene rings.
  • In liver, benzene is oxidized to an epoxide and benzopyrene is converted into an epoxy diol. These substances are carcinogenic and can react with DNA and thus, can induce mutation leading to uncontrolled growth of cancer cells.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

Multiple Choice Questions

1. Alkanes are represented by the general formula ………….
(A) CnH2n-2
(B) CnH2n+2
(C) CnH2n
(D) CnHn
Answer:
(B) CnH2n+2

2. Which of the following compound is alkanes?
(A) C5H10
(B) C10H22
(C) C15H28
(D) C9H16
Answer:
(B) C10H22

3. Alkanes are commonly called …………
(A) arenes
(B) paraffins
(C) olefins
(D) acetylenes
Answer:
(B) paraffins

4. Every carbon atom in alkanes is …………..
(A) sp hybridized
(B) sp2 hybridized
(C) sp3 hybridized
(D) sp3d hybridized
Answer:
(C) sp3 hybridized

5. Isomerism is the phenomenon in which two or more organic compounds have ………….
(A) same molecular formula but different structural formula
(B) same structural formula but different molecular formula
(C) same general formula, but different structural formula
(D) same empirical formula, same structural formula
Answer:
(A) same molecular formula but different structural formula

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

6. Pentane exhibits …………. chain isomers.
(A) two
(B) three
(C) four
(D) five
Answer:
(B) three

7. Which of the following is NOT an isomer of hexane?
(A) 2-Methylpentane
(B) 2,2-Dimethylbutane
(C) 2,2-Dimethylpentane
(D) 3-Methylpentane
Answer:
(C) 2,2-Dimethylpentane

8. Alkanes can be prepared by ………… of unsaturated hydrocarbons.
(A) hydrogenation
(B) oxidation
(C) hydrolysis
(D) cracking
Answer:
(A) hydrogenation

9. Catalytic hydrogenation of ethene or acetylene gives …………..
(A) ethane
(B) propylene
(C) methane
(D) propane
Answer:
(A) ethane

10. Ethyl iodide when reduced by zinc and dilute HCl, leads to the formation of …………..
(A) Methane
(B) Ethane
(C) Ethylene
(D) Butane
Answer:
(B) Ethane

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

11. The reaction of alkyl halides with sodium in dry ether to give higher alkanes is called ………..
(A) Wurtz reaction
(B) Kolbe’s reaction
(C) Frankland’s reaction
(D) Williamson’s reaction
Answer:
(A) Wurtz reaction

12. Methane is ………… molecule.
(A) polar
(B) nonpolar
(C) highly polar
(D) none of these
Answer:
(B) nonpolar

13. Alkanes are ………… in water.
(A) soluble
(B) sparingly soluble
(C) insoluble
(D) none of these
Answer:
(C) insoluble

14. As branching increases, boiling point of alkanes ………….
(A) increases
(B) decreases
(C) remains same
(D) None of these
Answer:
(B) decreases

15. Halogenation of alkane is an example of …………. reaction.
(A) dehydration
(B) substitution
(C) addition
(D) elimination
Answer:
(B) substitution

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

16. Order of reactivity of halogens in halogenation of alkanes is ………….
(A) F2 > Cl2 > Br2 > I2
(B) I2 > Br2 > Cl2 > F2
(C) Br2 < I2 < F2 < Cl2
(D) Cl2 < I2 < Br2 < F2
Answer:
(A) F2 > Cl2 > Br2 > I2

17. The thermal decomposition of alkanes in absence of air to give lower alkanes, alkenes and hydrogen is called ………….
(A) vapour phase nitration
(B) pyrolysis
(C) polymerisation
(D) combustion
Answer:
(B) pyrolysis

18. But-1-ene and But-2-ene are …………
(A) chain isomers
(B) position isomers
(C) geometrical isomers
(D) metamers
Answer:
(B) position isomers

19. Hex-2-ene and 2-Methylpent-2-ene exhibit …………
(A) chain isomerism
(B) position isomerism
(C) geometrical isomerism
(D) optical isomerism
Answer:
(A) chain isomerism

20. Which of the following shows position isomerism?
(A) Propene
(B) Ethene
(C) 2-Methylpropene
(D) Pent-2-ene
Answer:
(D) Pent-2-ene

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

21. When identical atoms or group of atoms are attached to the two carbon atoms on the same side of the double bond, the isomer is called ………… isomer.
(A) cis
(B) trans
(C) position
(D) chain
Answer:
(A) cis

22. Which of the following does NOT exhibit geometrical isomers?
(A) But-2-ene
(B) Pent-2-ene
(C) But-1-ene
(D) Hex-2-ene
Answer:
(C) But-1-ene

23. When ethyl bromide is heated with alcoholic KOH, ………… is formed.
(A) ethane
(B) ethanol
(C) ethene
(D) acetylene
Answer:
(C) ethene

24. Alkenes are insoluble in …………
(A) benzene
(B) water
(C) ether
(D) chloroform
Answer:
(B) water

25. Markownikov’s rule is applicable to …………
(A) symmetrical alkenes
(B) alkanes
(C) unsymmetrical alkenes
(D) alkynes
Answer:
(C) unsymmetrical alkenes

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

26. When propene is treated with HBr in the dark and in absence of peroxide, then the main product formed is …………
(A) 1-bromopropane
(B) 2-bromopropane
(C) 1,2-dibromopropane
(D) 1,3-dibromopropane
Answer:
(B) 2-bromopropane

27. The product formed by the addition of HCl to propene in presence of peroxide is …………..
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 151
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 153

28. Propene reacts with HBr in presence of peroxide, to form …………..
(A) 2-bromopropane
(B) 1-bromopropane
(C) 3-bromopropane
(D) 1,2-dibromopropane
Answer:
(B) 1-bromopropane

29. Markovnikov’s rule is applicable for …………..
(A) CH2 = CH2
(B) CH3CH = CHCH3
(C) CH3CH2CH = CHCH2CH3
(D) (CH3)2C = CH2
Answer:
(D) (CH3)2C = CH2

30. The addition of HCl in presence of peroxide does not follow anti-Markownikov’s rule because …………..
(A) HCl bond is too strong to be broken homolytically
(B) Cl atom is not reactive enough to add on to a double bond
(C) Cl atom combines with H atom to form HCl
(D) HCl is a reducing agent
Answer:
(A) HCl bond is too strong to be broken homolytically

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

31. An alkene on ozonolysis produces a mixture of acetaldehyde and acetone. Identify the alkene.
(A) But-1-ene
(B) But-2-ene
(C) 2-Methylbut-1-ene
(D) 2-Methylbut-2-ene
Answer:
(D) 2-Methylbut-2-ene

32. The ozonolysis of (CH3)2C = C(CH3)2 followed by treatment with zinc and water will give ……………
(A) acetone
(B) acetone and acetaldehyde
(C) formaldehyde and acetone
(D) acetaldehyde
Answer:
(A) acetone

33. The compound which forms only acetaldehyde on ozonolysis is …………..
(A) ethene
(B) propyne
(C) but-1-ene
(D) but-2-ene
Answer:
(D) but-2-ene

34. Treatment of ethylene with ozone followed by decomposition of the product with Zn/H2O gives two moles of ………….
(A) formaldehyde
(B) acetaldehyde
(C) formic acid
(D) acetic acid
Answer:
(A) formaldehyde

35. Ozonolysis of 2,3-Dimethylbut-1-ene followed by reduction with zinc and water gives ………….
(A) methanoic acid and 3-methylbutan-2-one
(B) methanal and 2-methylbutan-2-one
(C) methanal and 3-methylbutan-2-one
(D) methanoic acid and 2-methylbutan-2-one
Answer:
(C) methanal and 3-methylbutan-2-one

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

36. The reaction, CH2 = CH2 + H2O + [O]
Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons 152
is called ……………
(A) hydroxylation
(B) decarboxylation
(C) hydration
(D) dehydration
Answer:
(A) hydroxylation

37. An alkene on vigorous oxidation with KMnO4 gives only acetic acid. The alkene is …………..
(A) CH3CH2CH = CH2
(B) CH3CH = CHCH3
(C) (CH3)2C = CH2
(D) CH3CH = CH2
Answer:
(B) CH3CH = CHCH3

38. Ethylene reacts with Baeyer’s reagent to give a/an ………….
(A) glycol
(B) aldehyde
(C) acid
(D) alcohol
Answer:
(A) glycol

39. Baeyer’s reagent is ………….
(A) aqueous KMnO4
(B) neutral KMnO4
(C) alkaline KMnO4
(D) aqueous bromine water
Answer:
(C) alkaline KMnO4

40. Alkynes have general formula ………….
(A) CnH2n-2
(B) CnH2n
(C) CnH2n+2
(D) CnH2n+1
Answer:
(A) CnH2n-2

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

41. Aliphatic unsaturated hydrocarbons containing two carbon-carbon triple bonds in their structure are called as ………….
(A) alkadiynes
(B) alkatriynes
(C) alkynes
(D) alkanes
Answer:
(A) alkadiynes

42. Acetylene is prepared in the industry by the action of water on ………….
(A) calcium carbonate
(B) calcium carbide
(C) mercuric chloride
(D) calcium oxide
Answer:
(B) calcium carbide

43. The dihalogen derivatives of alkanes when heated with …………. form corresponding alkynes.
(A) alcoholic water
(B) sodamide
(C) zinc
(D) acids
Answer:
(B) sodamide

44. Alkynes readily undergo …………. reaction.
(A) addition
(B) substitution
(C) elimination
(D) rearrangement
Answer:
(A) addition

45. Liquid bromine reacts with acetylene to form ………….
(A) 1,2-dibromoethene
(B) 1,1,2,2-tetrabromoethane
(C) 1,1-dibromoethene
(D) methyl chloride
Answer:
(B) 1,1,2,2-tetrabromoethane

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

46. When acetylene is passed through dil H2SO4 in the presence of 1% mercuric sulphate, the compound formed is ………….
(A) ethanol
(B) acetone
(C) acetaldehyde
(D) acetic acid
Answer:
(C) acetaldehyde

47. The compounds which contain at least one benzene ring are ………….
(A) aliphatic compounds
(B) aromatic compounds
(C) cycloalkanes
(D) both (A) and (B)
Answer:
(B) aromatic compounds

48. Which of the following compounds does NOT contain any benzene rings in their structure?
(A) Benzaldehyde
(B) Benzoic acid
(C) Naphthalene
(D) Furan
Answer:
(D) Furan

49. Benzene undergoes ………….
(A) only addition reaction
(B) only substitution reaction
(C) both addition and substitution reactions
(D) nucleophilic substitution reactions
Answer:
(C) both addition and substitution reactions

50. If the substituents are on the adjacent carbon atoms in the benzene ring, it is called ………….
(A) meta
(B) para
(C) ortho
(D) beta
Answer:
(C) ortho

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

51. How many molecules of acetylene are required to form benzene?
(A) 2
(B) 3
(C) 4
(D) 5
Answer:
(B) 3

52. Which of the following compound on reduction gives benzene?
(A) Sodium benzoate
(B) Acetylene
(C) Cyclohexane
(D) Phenol
Answer:
(D) Phenol

53. X-Ray diffraction reveals that benzene is a …………. structure.
(A) triangular
(B) planar
(C) co-planar
(D) 3D
Answer:
(B) planar

54. γ-isomer of BHC is known as ………….
(A) gammene
(B) gammaxane
(C) chlorobenzene
(D) hexachlorobenzene
Answer:
(B) gammaxane

55. Benzene when treated with ozone forms ………….
(A) glyoxal
(B) acetic acid
(C) formaldehyde
(D) benzaldehyde
Answer:
(A) glyoxal

Maharashtra Board Class 11 Chemistry Important Questions Chapter 15 Hydrocarbons

56. …………. is formed as intermediate product in ozonolysis of benzene.
(A) Benzaldehyde
(B) Phenol
(C) Benzene triozonide
(D) Cyclohexane
Answer:
(C) Benzene triozonide

57. Electrophile in chlorination of benzene is ………….
(A) Cl
(B) Cl+
(C) Cl
(D) Cl2
Answer:
(B) Cl+

58. Benzene when treated with fuming. H2SO4 at 373 K forms ………….
(A) ethylbenzene
(B) toluene
(C) benzene sulphonic acid
(D) acetophenone sulphonic acid
Answer:
(C) benzene sulphonic acid

59. Ethyl chloride reacts with benzene in presence of anhydrous aluminium chloride to form ………….
(A) ethyl benzene
(B) chlorobenzene
(C) toluene
(D) acetophenone
Answer:
(A) ethyl benzene

60. The electrophile in Friedel-Craft’s alkylation reaction is ………….
(A) R+
(B) R
(C) Cl+
(D) RCO+
Answer:
(A) R+

Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life

Balbharti Maharashtra State Board 11th Chemistry Textbook Solutions Chapter 16 Chemistry in Everyday Life Textbook Exercise Questions and Answers.

Maharashtra State Board 11th Chemistry Solutions Chapter 16 Chemistry in Everyday Life

1. Choose the correct option

Question A.
Oxidative Rancidity is …………….. reaction
a. addition
b. substitution
c. Free radical
d. combination
Answer:
c. Free radical

Question B.
Saponification is carried out by ……………..
a. oxidation
b. alkaline hydrolysis
c. polymerisation
d. Free radical formation
Answer:
b. alkaline hydrolysis

Question C.
Aspirin is chemically named as ……………..
a. Salicylic acid
b. acetyl salicylic acid
c. chloroxylenol
d. thymol
Answer:
b. acetyl salicylic acid

Question D.
Find odd one out from the following
a. dettol
b. chloroxylenol
c. paracetamol
d. trichlorophenol
Answer:
c. paracetamol

Question E.
Arsenic based antibiotic is
a. Azodye
b. prontosil
c. salvarsan
d. sulphapyridine
Answer:
c. salvarsan

Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life

Question F.
The chemical used to slow down the browning action of cut fruit is
a. SO3
b. SO2
c. H2SO4
d. Na2CO3
Answer:
b. SO2

Question G.
The chemical is responsible for the rancid flavour of fats is
a. Butyric acid
b. Glycerol
c. Protein
d. Saturated fat
Answer:
a. Butyric acid

Question H.
Health benefits are obtained by consumption of
a. Saturated fats
b. trans fats
c. monounsaturated fats
d. all of these
Answer:
c. monounsaturated fats

2. Explain the following :

Question A.
Cooking makes food easy to digest.
Answer:

  • During the cooking process, high polymers of carbohydrates or proteins are hydrolysed to smaller polymeric units.
  • The uncooked food mixture is a heterogeneous suspension which becomes a colloidal matter on cooking.
  • As a result, the constituent nutrient molecules present in cooked food are smaller in size and hence, easier to digest, than the uncooked food.

Hence, cooking makes food easy to digest.

Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life

Question B.
On cutting some fruits and vegetables turn brown.
Answer:
i. Cutting of fruits and vegetables damage the cells, resulting in release of chemicals.
ii. Depending on the pH of fruits/vegetables, polyphenols are released.
iii. Due to the action of an enzyme, these polyphenols react with oxygen present in the air and get oxidised to form quinones.
Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life 1
iv. Quinones further undergo reactions including polymerization, which results in the formation of brown coloured products called as tannins.
Thus, on cutting, some fruits and vegetables turn brown.

Question C.
Vitmin E is added to packed edible oil.
Answer:

  • Vitamin E is a very effective natural antioxidant.
  • The phenolic – OH group present in the structure of vitamin E is responsible for its antioxidant activity.
  • Also, the long chain of saturated carbon atoms makes it fat soluble.

Therefore, when vitamin E is added to packed edible oil, it prevents the oxidative rancidity of the oil.

Question D.
Browning of cut apple can be prolonged by applying lemon juice.
Answer:

  • Browning of cut apple is due to the oxidation of polyphenols at a particular pH to quinones, which further undergoes polymerization to form brown coloured tannins.
  • This browning reaction can be prolonged or slowed down by using reducing agents or by changing the pH.
  • Applying lemon juice (i.e., citric acid) on the cut apple, lowers the pH at the surface of the apple. This prevents the oxidation reaction. Thus, browning of cut apple can be prolonged by applying lemon juice.

Question E.
A diluted solution (4.8 % w/v) of 2,4,6-trichlorophenol is employed as antiseptic.
Answer:

  • 2,4,6-Trichlorophenol (TCP) is more potent antiseptic than phenol.
  • It has low corrosive effects as compared to phenol, if used in lower concentrations.

Hence, diluted solution (4.8% w/v) of 2,4,6-trichlorophenol is used as antiseptic.

Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life

Question F.
Turmeric powder can be used as antiseptic.
Answer:

  • Turmeric powder contains an active ingredient called curcumin.
  • Curcumin has antiseptic properties; thus, it is used for wound healing or applied on bruise.

Hence, turmeric powder can be used as antiseptic.

3. Identify the functional groups in the following molecule :

Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life 2
Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life 3
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life 4
Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life 5

4. Give two differences between the following

Question A.
Disinfectant and antiseptic
Answer:

DisinfectantAntiseptic
1. Disinfectants are applied on non-living surfaces like floors, instruments, sanitary ware, etc. to kill wide range of microorganisms.1. Antiseptics are applied on the surface of living tissues in order to sterilise them.
2. Disinfectants cannot be applied on wounds.2. Antiseptics can be directly applied on wounds.
3. p-chloro-o-benzyl phenol3. Iodine, boric acid, iodoform, dettol, etc.

Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life

Question B.
Soap and synthetic detergent
Answer:

SoapSynthetic detergent
1. Soaps can be broadly classified into two types, i.e., toilet soaps (prepared using KOH) and laundry soaps (prepared using NaOH).1. Synthetic detergents are of three types, i.e., anionic, cationic and nonionic detergents.
2. Soaps cannot be used in hard water.2. Synthetic detergents can be used in soft water as well as in hard water.

Question C.
Saturated and unsaturated fats
Answer:

Saturated fatsUnsaturated fats
1. In saturated fat, long chains of tetrahedral carbon atoms in the fatty acid get closely packed together.1. In unsaturated fats, the presence of one or more C = C bond in long chains of fatty acids, prevent molecules from packing closely together.
2. In saturated fats, the van der Waals forces between long saturated chains are strong. Hence, their melting points are higher than unsaturated fats.2. In unsaturated fats, the van der Waals forces between long unsaturated chains are weak. Hence, their melting points are lower than saturated fats.

Question D.
Rice flour and cooked rice
Answer:

Rice flourCooked rice
1. Rice flour can be stored for a long period of time. It has a long shelf life.1. Cooked rice cannot be stored for a longer period of time. It has very short shelf life.
2. Rice flour is uncooked food and hence, it is difficult to digest.2. Cooked rice is easier to digest.

5. Match the pairs.

A groupB group
A. Paracetamola. Antibiotic
B. Chloramphenicolb. Synthetic detergent
C. BHTc. Soap
D. Sodium stearated. Antioxidant
e. Analgesic

Answer:
A – e,
B – a,
C – d,
D – c

Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life

6. Name two drugs which reduce body pain.
Answer:
Aspirin and paracetamol are the two drugs that reduce body pain.

7. Explain with examples

Question A.
Antiseptics
Answer:
i. Antiseptics are used to sterilise surfaces of living tissue when the risk of infection is very high, such as during surgery or on wounds.
ii. Commonly used antiseptics include inorganics like iodine and boric acid or organics like iodoform and some phenolic compounds.

e.g.

  • Tincture of iodine (2-3% solution of iodine in alcohol-water mixture) and iodoform serve as powerful antiseptics and is used to apply on wounds.
  • A dilute aqueous solution of boric acid is a weak antiseptic used for eyes.
  • Various phenols are used as antiseptics. A dilute aqueous solution of phenol (carbolic acid) is used as antiseptic; however, phenol is found to be corrosive in nature. Many chloro derivatives of phenols are more potent antiseptics than the phenol itself. They can be used with much lower concentrations, which reduce their corrosive effects.
  • Two of the most common phenol derivatives in use are trichlorophenol (TCP) and chloroxylenol (which is an active ingredient of antiseptic dettol).
  • Thymol obtained from oil of thyme (a spice plant) has excellent non-toxic antiseptic properties.

Question B.
Disinfectant
Answer:

  • Disinfectants are non-selective antimicrobials.
  • They kill a wide range of microorganisms including bacteria.
  • They are used on non-living surfaces for example, floors, instruments, sanitary ware, etc.
  • Various phenols can be used as disinfectants.
    e.g. p-Chloro-o-benzyl phenol is used as a disinfectant in all-purpose cleaners.

Question C.
Cationic detergents
Answer:
Cationic detergents: These are quaternary ammonium salts having one long chain alkyl group.
e.g. Ethyltrimethylammonium bromide: [CH3(CH2)15 – N+(CH3)3]Br

Question D.
Anionic detergents
Answer:
Anionic detergents: These are sodium salts of long chain alkyl sulphonic acids or long chain alkyl substituted benzene sulphonic acids.
e.g. Sodium lauryl sulphate: CH3(CH2)10CH3O\(\mathrm{SO}_{3}^{-}\)Na+

Question E.
Non-ionic detergents
Answer:
Nonionic detergents: These are ethers of polyethylene glycol with alkyl phenol or esters of polyethylene glycol with long chain fatty acid.
e.g. a. Nonionic detergent containing ether linkage:
Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life 6
b. Nonionic detergent containing ester linkage: CH3(CH2)16 – COO(CH2CH2O)nCH2CH2OH

Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life

8. Explain : mechnism of cleansing Action of soap with flow chart.
Answer:
The following flow chart shows mechanism of cleansing action of soap:
Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life 7

9. What is meant by broad spectrum antibiotic and narrow spectrum antibiotics?
Answer:
Antibiotics which are effective against wide range of bacteria are known as broad spectrum antibiotics, while antibiotics which are effective against one group of bacteria are known as narrow spectrum antibiotics.

10. Answer in one senetence

Question A.
Name the painkiller obtained from acetylation of salicyclic acid.
Answer:
Aspirin is the pain killer obtained from acetylation of salicylic acid.

Question B.
Name the class of drug often called as painkiller.
Answer:
Analgesics are the class of drug often called as painkiller.

Question C.
Who discovered penicillin?
Answer:
Alexander Fleming discovered penicillin.

Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life

Question D.
Draw the structure of chloroxylenol and salvarsan.
Answer:
Structure of chloroxylenol:
Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life 8

Structure of salvarsan:
Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life 9

Question E.
Write molecular formula of Butylated hydroxy toulene.
Answer:
Molecular formula of butylated hydroxytoluene is C15H24O.

Question F.
What is the tincture of iodine ?
Answer:
Tincture of iodine is a 2-3% solution of iodine in alcohol-water mixture.

Question G.
Draw the structure of BHT.
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life 10

Question I.
Write a chemical equation for saponification.
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life 11

Question J.
Write the molecular formula and name of
Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life 12
Answer:
Molecular formula: C9H8O4
Name: Aspirin

Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life

11. Answer the following

Question A.
Write two examples of the following.
a. Analgesics
c. Antiseptics
d. Antibiotics
e. Disinfectant
Answer:

No.Drug typeExamples
i.AnalgesicsAspirin, paracetamol
ii.AntisepticsDettol, thymol
iii.AntibioticsPenicillin, sulphapyridine
iv.DisinfectantPhenol, p-Chloro-o-benzyl phenol

Question B.
What do you understand by antioxidant ?
Answer:

  • An antioxidant is a substance that delays the onset of oxidant or slows down the rate of oxidation of foodstuff.
  • It is used to extend the shelf life of food.
  • Antioxidants react with oxygen-containing free radicals and thereby prevent oxidative rancidity.
    e.g. Vitamin E is a very effective natural antioxidant.

Activity :

Collect information about different chemical compounds as per their applications in day-to-day life.
Answer:

No.Chemical compoundApplications
i.Vinegar(CH3COOH)Preservation of food, salad dressing, sauces, etc.
ii.Magnesium hydroxide [Mg(OH)2]Common component of antacids (used to relieve heartburn, acid indigestion and stomach upset.)
iii.Baking soda (NaHCO3)Cooking, antacid, toothpaste, etc.
iv.Sodium benzoate (C6H5COONa)Used as food preservative

[Note: Students can use the above information as reference and collect additional information on their own.]

Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life

11th Chemistry Digest Chapter 16 Chemistry in Everyday Life Intext Questions and Answers

Can you recall? (Textbook Page No. 261)

Question i.
What are the components of balanced diet?
Answer:
Carbohydrates, proteins, lipids (fats and oil), vitamins, minerals and water are the components of balanced diet.

Question ii.
Why is food cooked? What is the difference in the physical states of uncooked and cooked food?
Answer:

  • Food is cooked in order to make it easy to digest.
  • Also, the raw or uncooked food may contain harmful microorganisms which may cause illness. Cooking of food at high temperature kills most of these microorganisms.
  • Raw/uncooked food materials like dried pulses, vegetables, meat, etc. are hard and thus, not easily chewable while cooked food is soft and tender, therefore, easily chewable.

Question iii.
What are the chemicals that we come across in everyday life?
Answer:
Detergents, shampoos, medicines, various food flavours, food colours, etc. are different types of chemicals that we come across in everyday life.

Just think (Textbook Page No. 261)

Question i.
Why is food stored for a long time?
Answer:
Food (like various cereals, pulses, pickles) is stored for a long time to make it available in all seasons.

Question ii.
What methods are used for preservation of food?
Answer:
Various physical and chemical methods are used for preservations of food.

  • Physical methods like, addition of heat, removal of heat, removal of water, irradiation, etc., are used in order to preserve food.
  • Chemical methods like, addition of sugar, salt, vinegar, etc. are employed for preservation of food.

Question iii.
What is meant by quality of food?
Answer:
Food quality can be described in terms of parameters such as flavour, smell, texture, colour and microbial spoilage.

Can you recall? (Textbook Page No. 263)

Question i.
How is Vanaspati ghee made?
Answer:
Vanaspati ghee is prepared by hydrogenation of oils. Hydrogen gas is passed through the oils at about 450 K in the presence of nickel catalyst to form solid edible fats like vanaspati ghee.
Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life 13

Question ii.
What are the physical states of peanut oil, butter, animal fat, Vanaspati ghee at room temperature?
Answer:

ExamplePhysical state
Peanut oilLiquid
ButterSemi-solid
Animal fatSolid/semi-solid
Vanaspati gheeSolid/semi-solid

Maharashtra Board Class 11 Chemistry Solutions Chapter 16 Chemistry in Everyday Life

Can you tell? (Textbook Page No. 264)

Question 1.
When is an antipyretic drug used?
Answer:
An antipyretic drug is used to reduce fever (that is, it lowers body temperature when a fever is present).

Question 2.
What type of medicine is applied to a bruise?
Answer:
Antiseptic such as tincture of iodine is applied on a bruise in order to prevent the exposed living tissue from getting infected.

Question 3.
What is meant by a broad spectrum antibiotic?
Answer:
Antibiotics which are effective against wide range of bacteria are known as broad spectrum antibiotic.

Question 4.
What is the active principle ingredient of cinnamon bark?
Answer:
Cinnamaldehyde is the principle active ingredient of cinnamon bark.

Can you tell? (Textbook Page No. 268)

Question i.
Can we use the same soap for bathing as well as cleaning utensils or washing clothes? Why?
Answer:
No, we cannot use the same soap for bathing as well as cleaning utensils or washing clothes due to the following reasons:

  • Chemical composition of each type of soap or cleansing material is different.
  • Nature, acidity, texture, reactivity towards water (i.e., hard water or soft water), reactivity towards microorganisms, stains are different for each type of soap.
  • Depending on these qualities, soaps are classified and used accordingly.
    e.g. pH of soaps used for bathing purpose is different than that of the soap which is used for cleaning utensils.

Thus, we cannot use the same soap for bathing as well as cleaning utensils or washing clothes.

Question ii.
How will you differentiate between soaps and synthetic detergent using borewell water?
Answer:
Borewell water is hard water. Soaps and synthetic detergents react differently with hard water.

  1. Soap: Soaps are insoluble in hard water. Borewell water (hard water) contains Ca2+ and Mg2+ ions. Soaps react with these ions to form insoluble magnesium and calcium salts of fatty acids. These salts precipitate out as gummy substance or form scum.
  2. Synthetic detergents: Synthetic detergents can be used in hard water as well. They contain molecules (components) which form soluble calcium and magnesium salts.

Thus, soaps will form scum in borewell water but synthetic detergents will not.

Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons

Balbharti Maharashtra State Board 11th Chemistry Textbook Solutions Chapter 15 Hydrocarbons Textbook Exercise Questions and Answers.

Maharashtra State Board 11th Chemistry Solutions Chapter 15 Hydrocarbons

1. Choose correct options

Question A.
Which of the following compound has the highest boiling point?
a. n-pentane
b. iso-butane
c. butane
d. neopentane
Answer:
a. n-pentane

Question B.
Acidic hydrogen is present in :
a. acetylene
b. ethane
c. ethylene
d. dimethyl acetylene
Answer:
a. acetylene

Question C.
Identify ‘A’ in the following reaction:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 1
a. KMnO4/H+
b. alkaline KMnO4
c. dil. H2SO4/1% HgSO4
d. NaOH/H2O2
Answer:
a. KMnO4/H+

Question D.
Major product of chlorination of ethyl benzene is :
a. m-chlorethyl benzene
b. p-chloroethyl benzene
c. chlorobenzene
d. o-chloroethylbenzene
Answer:
b. p-chloroethyl benzene

Question E.
1 – chloropropane on treatment with alc. KOH produces :
a. propane
b. propene
c. propyne
d. propyl alcohol
Answer:
b. propene

Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons

2. Name the following :

Question A.
The type of hydrocarbon that is used as lubricant.
Answer:
Waxes

Question B.
Alkene used in the manufacture of polythene bags.
Answer:
Ethene

Question C.
The hydrocarbon said to possess carcinogenic property.
Answer:
Benzene

Question D.
What are the main natural sources of alkane?
Answer:
Crude petroleum and natural gas.

Question E.
Arrange the three isomers of alkane with malecular formula C5H12 in increasing order of boiling points and write their IUPAC names.
Answer:
The three isomers of alkane with molecular formula C5H12 are as follows:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 2
The increasing order of their boiling point is I > II > III.

Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons

Question F.
Write IUPAC names of the products obtained by the reaction of cold concentrated sulphuric acid followed by water with the following compounds.
a. propene
b. but-1-ene
Answer:
a. propene:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 3

b. but-1-ene:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 4

Question G.
Write the balanced chemical reaction for preparation of ethane from
a. Ethyl bromide
b. Ethyl magnesium iodide
Answer:
a. Preparation of ethane from ethyl bromide:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 5
b. Preparation of ethane from ethyl magnesium iodide:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 6

Question H.
How many monochlorination products are possible for
a. 2-methylpropane ?
b. 2-methylbutane ?
Draw their structures and write their IUPAC names.
Answer:
a. Possible monochlorination products for 2-methylpropane:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 7

b. Possible monochlorination products for 2-methylbutane:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 8

Question I.
Write all the possible products for pyrolysis of butane.
Answer:
Possible products for pyrolysis of butane are:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 9

Question J.
Which of the following will exhibit geometical isomerism ?
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 10
Answer:
Compound (c) will exhibit geometrical isomerism.

Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons

Question K.
What is the action of following on ethyl iodide ?
a. alc. KOH
b. Zn, HCl
Answer:
a. Action of alc. KOH on ethyl iodide:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 11

b. Action of Zn/HCl on ethyl iodide:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 12

Question L.
An alkene ‘A’ an ozonolysis gives 2 moles of ethanal. Write the structure and IUPAC name of ‘A’.
Answer:
Structure of A: CH3 – CH = CH – CH3
IUPAC name of A: But-2-ene

Question M.
Acetone and acetaldehyde are the ozonolysis products of an alkene. Write the structural formula of an alkene and give IUPAC name of it.
Answer:
The structural formula of alkene:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 13
IUPAC name is 2-methylbut-2-ene.

Question N.
Write the reaction to convert
a. propene to n-propyl alcohol.
b. propene to isoproyl alcohol.
Answer:
a.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 14
b.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 15

Question O.
What is the action of following on but-2-ene ?
a. dil alkaline KMnO4
b. acidic KMnO4
Answer:
a. Action of dil. alkaline KMnO4 on but-2-ene:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 16
b. Action of acidic KMnO4 on but-2-ene:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 17

Question P.
Complete the following reaction sequence :
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 18
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 19

Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons

Question Q.
Write the balanced chemical reactions to get benzene from
a. Sodium benzoate.
b. Phenol.
Answer:
a. Sodium benzoate:
When anhydrous sodium benzoate is heated with soda lime, it undergoes decarboxylation and gives benzene.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 20

b. Phenol:
When vapours of phenol are passed over heated zinc dust, it undergoes reduction and gives benzene.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 21

Question R.
Predict the possible products of the following reaction.
a. chlorination of nitrobenzene,
b. sulfonation of chlorobenzene,
c. bromination of phenol,
d. nitration of toluene.
Answer:
a. Nitro group is meta directing group. So, chlorination of nitrobenzene gives m-chloronitrobenzene.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 22

b. Chloro group is ortho and para directing group. So, sulphonation of chlorobenzene gives p-chlorobenzene sulphonic acid and o- chlorobenzene sulphonic acid.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 23

c. Phenolic -OH group is ortho and para directing group. So, bromination of phenol gives p-bromophenol and o-bromophenol.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 24

d. Methyl group is ortho and para directing group. So, nitration of toluene gives p-nitrotoluene and o-nitrotoluene.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 25

3. Identify the main product of the reaction
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 26
Answer:
a.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 27

b.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 28

c.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 29

d.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 30

4. Read the following reaction and answer the questions given below.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 31
a. Write IUPAC name of the product.
b. State the rule that governs formation of this product.
Answer:
a. IUPAC name of the product: 1 -Bromo-2-methylpropane
b. Anti-Markownikov’s rule/Kharasch effect/peroxide effect: It states that, the addition of HBr to unsymmetrical alkene in the presence of organic peroxide (R-O-O-R) takes place in the opposite orientation to that suggested by Markovnikov’s rule.

Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons

5. Identify A, B, C in the following reaction sequence :
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 32
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 33

6. Identify giving reason whether the following compounds are aromatic or not.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 34
Answer:
A.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 35
Compound is non-aromatic since it has 4π electrons and hence, does not obey Huckel rule of aromaticity.

B.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 36
Compound is non-aromatic since it has 4π electrons and hence, does not obey Huckel rule of aromaticity.

C.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 37
Compound is aromatic since it has 6π electrons and hence, obeys Huckel rule of aromaticity.

D.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 38
Compound is aromatic since it has 6n electrons and hence, obeys Huckel rule of aromaticity.

7. Name two reagents used for acylation of benzene.
Answer:
The two reagents used for acylation of benzene are:
i. CH3COCl (acetyl chloride) and anhydrous AlCl3
ii. (CH3CO)2O (acetic anhydride) and anhydrous AlCl3

8. Read the following reaction and answer the questions given below.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 39
A. Write the name of the reaction.
B. Identify the electrophile in it.
C. How is this electrophile generated?
Answer:
A. The name of the reaction is Friedel-Craft’s alkylation reaction.
B. The electrophile in the reaction is +CH3.
C. The electrophile +CH3 is generated as follows:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 40

Activity:

Prepare chart of hydrocarbons and note down the characteristics.
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 41
Characteristics of hydrocarbons:

  • They are chemical compounds that are formed from only hydrogen and carbon atoms.
  • Both ‘C’ and ‘H’ share an electron pair forming covalent bonds.
  • One of the special properties of carbon is its ability to form double and triple bonds (unsaturation). Saturated hydrocarbons are alkanes and cycloalkanes while the unsaturated hydrocarbons are the aromatics, alkenes and alkynes.
  • All hydrocarbons are insoluble in water, their boiling point increases as the size of alkane increases.
  • All hydrocarbons can reach complete oxidation.
  • Hydrocarbons are mainly used as fuel for transport and industry.

[Note: Students are expected to collect additional information on hydrocarbons on their own.]

Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons

11th Chemistry Digest Chapter 15 Hydrocarbons Intext Questions and Answers

Can you recall? (Textbook Page No. 233)

Question i.
What are hydrocarbons?
Answer:
The compounds which contain carbon and hydrogen as the only elements are called hydrocarbons.

Question ii.
Write structural formulae of the following compounds: propane, ethyne, cyclobutane, ethene, benzene.
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 42

Do you know? (Textbook Page No. 233)

Question 1.
Why are alkanes called paraffins?
Answer:
i. Alkanes contain only carbon-carbon and carbon-hydrogen single covalent bonds.
ii. They are chemically less reactive and do not have much affinity for other chemicals.
Hence, they are called paraffins.

Internet my friend. (Textbook Page No. 233)

Question 1.
Collect information about hydrocarbon.
Answer:

  • In organic chemistry, a hydrocarbon is an organic compound consisting of carbon and hydrogen as the only elements.
  • They are examples of group 14 hydrides.
  • Alkanes, cycloalkanes, aromatic hydrocarbons are different types of hydrocarbons.
  • Most of the hydrocarbons found on earth occur naturally in crude oil.
  • They mainly undergo substitution, addition or combustion reactions.
  • Most hydrocarbons are flammable and toxic.
  • They are the primary energy source in the form of combustible fuel source.

[Note: Students are expected to collect additional information on their own]

Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons

Use your brain power! (Textbook Page No. 234)

Question 1.
i. Write the structures of all the chain isomers of the saturated hydrocarbon containing six carbon atoms.
ii. Write IUPAC names of all the above structures.
Answer:
The structural formulae and names of all possible isomers having molecular formula C6H14 are as follows:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 43
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 44

Note:
Alkanes and isomer number

Number of CarbonAlkaneNumber of isomers
1MethaneNo structural isomer
2EthaneNo structural isomer
3PropaneNo structural isomer
4ButaneTwo
5PentaneThree
6HexaneFive

Can you recall? (Textbook Page No. 235)

Question i.
What is a catalyst?
Answer:
A catalyst is a substance that can be added to a reaction to increase the reaction rate without getting consumed in the process.
e.g. Ni is used as a catalyst in the catalytic hydrogenation of alkenes or alkynes.

Question ii.
What is addition reaction?
Answer:
When a compound combines with another compound to form a product that contain all the atoms in both the reactants, it is called an addition reaction.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 45

Try this (Textbook Page No. 235)

Question 1.
Transform the following word equation into balanced chemical equation and write at least 3 changes that occur at molecular level during this chemical change.
\(\text { 2-Methylpropene + Hydrogen } \stackrel{\text { catalyst }}{\longrightarrow} \text { Isobutane }\)
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 46
Three changes which occur at molecular level include:
Step 1: Adsorption of reactants: Reactants (alkene and hydrogen) get adsorbed on the catalytic surface.
Step 2: Formation of a product: Hydrogen atoms are added across the double bond of 2-methylpropene which results in the formation of product isobutane.
Step 3: Desorption: Product formed on the catalytic surface is readily desorbed making catalytic surface available for other molecules.

Use your brain power! (Textbook Page No. 236)

Question 1.
Why are alkanes insoluble in water and readily soluble in organic solvents like chloroform or ether?
Answer:

  • The solubility of any substance is governed by the principle of like dissolves like. This means polar compounds are soluble in polar solvents while nonpolar compounds are soluble in nonpolar solvents.
  • Alkanes consist of C – C and C – H nonpolar covalent bonds and thus, they are nonpolar in nature, whereas water is a polar solvent.
  • The dipole-dipole forces that exist between water molecules is much stronger than the forces of attraction between alkane and water molecules.

Hence, alkanes are insoluble in water and readily soluble in organic solvents like chloroform or ether.

Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons

Can you recall? (Textbook Page No. 238)

Question 1.
What is the product which is poisonous and causes air pollution formed by incomplete combustion of alkane?
Answer:
When alkanes are subjected to incomplete combustion, it forms carbon monoxide and carbon (soot).
i. 2CH4(g) + 3O2(g) → 2CO(g) + 4H2O(g)
ii. CH4(g) + O2(g) → C(s) + 2H2O(l)

Can you recall? (Textbook Page No. 238)

Question i.
What are alkenes?
Answer:
Alkenes are unsaturated hydrocarbons containing at least one carbon-carbon double bond.

Question ii.
Calculate the number of sigma (σ) and pi (π) bonds in 2-methylpropene.
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 47

Question iii.
Write the structural formula of pent-2-ene.
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 48

Can you tell? (Textbook Page No. 241)

Question i.
Explain by writing a reaction, the main product formed on heating 2-methylbutan-2-ol with concentrated sulphuric acid.
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 49

Question ii.
Will the main product in the above reaction show geometrical isomerism?
Answer:
No, the major product, i.e., 2-methylbut-2-ene does not show geometrical (or cis-trans) isomerism.

Can you tell? (Textbook Page No. 244)

Question 1.
Propan-1-ol and 2-methypropan-1-ol are not prepared by hydration method. Why?
Answer:
Propan-1-ol and 2-methylpropan-1-ol cannot be prepared by hydration of propene and 2-methylprop-1-ene because the addition reaction follows Markovnikov’s rule.

Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons

Use your brainpower. (Textbook Page No. 244)

Question 1.
On ozonolysis, an alkene forms the following carbonyl compounds. Draw the structure of unknown alkene from which these compounds are formed: HCHO and CH3COCH2CH3
Answer:
The structure of alkene which produces a mixture of HCHO and CH3COCH2CH3 on ozonolysis is
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 50

Use your brain power! (Textbook Page No. 245)

Question 1.
Write the structure of monomer from which each of the following polymers are obtained.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 51
Answer:

PolymerMonomeric unit
i.TeflonCF2 – CF2
Tetrafluoroethene
ii.PolypropeneH3C – CH = CH2
Propene
iii.Polyvinyl chlorideH2C = CHCl
Vinyl chloride

Can you tell? (Textbook Page No. 246)

Question i.
What are aliphatic hydrocarbons?
Answer:
Aliphatic hydrocarbons are hydrocarbons containing carbon and hydrogen joined together in straight chain or branched chain. They may be saturated (alkanes) or unsaturated (alkenes or alkynes).

Question ii.
Compare the proportion of carbon and hydrogen atoms in ethane, ethene and ethyne. Which compound is most unsaturated with hydrogen?
Answer:
Ethane
C : H = 2 : 6 = 1 : 3
Ethene
C : H = 2 : 4 = 1 : 2
Ethyne
C : H = 2 : 2 = 1 : 1
From the above proportion it is clear that ethyne with 1 : 1 ratio of C : H is most unsaturated with hydrogen (50%) as compared to ethane (25%) and ethene (33.33%).

Can you tell? (Textbook Page No. 247)

Question 1.
Why is sodamide used in dehydrohalogenation of vicinal dihalides to remove HX from alkenyl halide in place of alcoholic KOH?
Answer:

  • Sodamide (NaNH2) is a strong base and hence, helps in complete conversion of alkenyl halide formed in the first step to form alkynes.
  • The base (KOH or NaOH) used in first step gives alkynes in poor yield and hence, stronger bases such as NaNH2 on KNH2 are used in second step.

Use your brainpower! (Textbook Page No. 247)

Question 1.
Convert: 1-Bromobutane to hex-1-yne
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 52

Can you tell? (Textbook Page No. 248)

Question 1.
Alkanes and alkenes do not react with lithium amide. Give reason.
Answer:
i. The sp hybrid carbon atom in terminal alkynes is more electronegative than the sp2 carbon in ethene or the sp3 carbon in ethane.
ii. Due to high electronegative character of carbon in terminal alkynes, hydrogen atom can be given away as proton (H+) to very strong base as shown in the reactions below.
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 53
iii. Further, since s-character decreases from sp to sp2 to sp3 carbon atom, the relative acidity of alkanes, alkenes and alkynes is in the following order: H – C = C – H > H2C = CH2 > H3C – CH3
Hence, alkenes and alkanes do not react with lithium amide.

Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons

Use your brain power! (Textbook Page No. 248)

Question 1.
Arrange following hydrocarbons in the increasing order of acidic character: propane, propyne, propene.
Answer:
Propyne > propene > propane

Use your brain power! (Textbook Page No. 249)

Question 1.
Convert: 3-Methylbut-l-yne into 3-methylbutan-2-one
Answer:
Maharashtra Board Class 11 Chemistry Solutions Chapter 15 Hydrocarbons 54

Can you recall? (Textbook Page No. 249)

Question i.
What are aromatic hydrocarbons?
Answer:
Benzene and all compounds that have structures and chemical properties resembling benzene are called as aromatic hydrocarbons.

Question ii.
What are benzenoid and non-benzenoid aromatics?
Answer:
Benzenoid aromatics are compounds having at least one benzene ring in the structure.
e.g. Benzene, naphthalene, anthracene, phenol, etc.,
Non-benzenoid aromatics are compounds that contain an aromatic ring, other than benzene. e.g. Tropone, etc.

Can you recall? (Textbook Page No. 254)

Question 1.
What is decarboxylation?
Answer:
The reaction which involves removal of a carboxyl group (-COOH) in the form of carbon dioxide (CO2) is known as decarboxylation reaction.
R – COOH → R – H + CO2

Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.2

Balbharti Maharashtra State Board Class 11 Maths Solutions Pdf Chapter 6 Circle Ex 6.2 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 6 Circle Ex 6.2

Question 1.
Find the centre and radius of each of the following circles:
(i) x2 + y2 – 2x + 4y – 4 = 0
(ii) x2 + y2 – 6x – 8y – 24 = 0
(iii) 4x2 + 4y2 – 24x – 8y – 24 = 0
Solution:
(i) Given equation of the circle is x2 + y2 – 2x + 4y – 4 = 0
Comparing this equation with x2 + y2 + 2gx + 2fy + c = 0, we get
2g = -2, 2f = 4 and c = -4
⇒ g = -1, f = 2 and c = -4
Centre of the circle = (-g, -f) = (1, -2)
and radius of the circle
Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.2 Q1

(ii) Given equation of the circle is x2 + y2 – 6x – 8y – 24 = 0
Comparing this equation with x2 + y2 + 2gx + 2fy + c = 0, we get
2g = -6, 2f = -8 and c = -24
⇒ g = -3, f = -4 and c = -24
Centre of the circle = (-g, -f) = (3, 4)
and radius of the circle
Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.2 Q1.1

Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.2

(iii) Given equation of the circle is 4x2 + 4y2 – 24x – 8y – 24 = 0
Dividing throughout by 4, we get x2 + y2 – 6x – 2y – 6 = 0
Comparing this equation with x2 + y2 + 2gx + 2fy + c = 0, we get
2g = -6, 2f = -2 and c = -6
⇒ g = -3, f = -1 and c = -6
Centre of the circle = (-g, -f) = (3, 1)
and radius of the circle
Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.2 Q1.2

Question 2.
Show that the equation 3x2 + 3y2 + 12x + 18y – 11 = 0 represents a circle.
Solution:
Given equation is 3x2 + 3y2 + 12x + 18y – 11 = 0
Dividing throughout by 3, we get
x2 + y2 + 4x + 6y – \(\frac{11}{3}\) = 0
Comparing this equation with x2 + y2 + 2gx + 2fy + c = 0, we get
2g = 4, 2f = 6, c = \(\frac{-11}{3}\)
⇒ g = 2, f = 3, c = \(\frac{-11}{3}\)
Now, g2 + f2 – c = (2)2 + (3)2 – (\(\frac{-11}{3}\))
= 4 + 9 + \(\frac{11}{3}\)
= \(\frac{50}{3}\) > 0
∴ The given equation represents a circle.

Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.2

Question 3.
Find the equation of the circle passing through the points (5, 7), (6, 6), and (2, -2).
Solution:
Let C(h, k) be the centre of the required circle.
Since the required circle passes through points A(5, 7), B(6, 6), and D(2, -2),
CA = CB = CD = radius
Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.2 Q3
Consider, CA = CD
By distance formula,
\(\sqrt{(\mathrm{h}-5)^{2}+(\mathrm{k}-7)^{2}}=\sqrt{(\mathrm{h}-2)^{2}+[\mathrm{k}-(-2)]^{2}}\)
Squaring both the sides, we get
⇒ (h – 5)2 + (k – 7)2 = (h – 2)2 + (k + 2)2
⇒ h2 – 10h + 25 + k2 – 14k + 49 = h2 – 4h + 4 + k2 + 4k + 4
⇒ -10h – 14k + 74 = -4h + 4k + 8
⇒ 6h + 18k – 66 = 0
⇒ h + 3k – 11 = 0 …..(i)
Consider, CB = CD
By distance formula,
\(\sqrt{(h-6)^{2}+(k-6)^{2}}=\sqrt{(h-2)^{2}+[k-(-2)]^{2}}\)
Squaring both the sides, we get
⇒ (h – 6)2 + (k – 6)2 = (h – 2)2 + (k + 2)2
⇒ h2 – 12h + 36 + k2 – 12k + 36 = h2 – 4h + 4 + k2 + 4k + 4
⇒ -12h – 12k + 72 = -4h + 4k + 8
⇒ 8h + 16k – 64 = 0
⇒ h + 2k – 8 = 0 ……(ii)
By (i) – (ii), we get k = 3
Substituting k = 3 in (i), we get
h + 3(3) – 11 = 0
⇒ h + 9 – 11 = 0
⇒ h = 2
Centre of the circle is C(2, 3).
radius (r) = CD
= \(\sqrt{(2-2)^{2}+(3+2)^{2}}\)
= \(\sqrt{0+5^{2}}\)
= √25
= 5
The equation of a circle with centre at (h, k) and radius r is given by (x – h)2+ (y – k)2 = r2
Here, h = 2, k = 3
The required equation of the circle is
(x – 2)2 + (y – 3)2 = 52
⇒ x2 – 4x + 4 + y2 – 6y + 9 = 25
⇒ x2 + y2 – 4x – 6y + 4 + 9 – 25 = 0
⇒ x2 + y2 – 4x – 6y – 12 = 0

Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.2

Question 4.
Show that the points (3, -2), (1, 0), (-1, -2) and (1, -4) are concyclic.
Solution:
Let the equation of the circle passing through the points (3, -2), (1, 0) and (-1, -2) be
x2 + y2 + 2gx + 2fy + c = 0 …..(i)
For point (3, -2),
Substituting x = 3 and y = -2 in (i), we get
9 + 4 + 6g – 4f + c = 0
⇒ 6g – 4f + c = -13 ….(ii)
For point (1, 0),
Substituting x = 1 andy = 0 in (i), we get
1 + 0 + 2g + 0 + c = 0
⇒ 2g + c = -1 ……(iii)
For point (-1, -2),
Substituting x = -1 and y = -2, we get
1 + 4 – 2g – 4f + c = 0
⇒ 2g + 4f – c = 5 …….(iv)
Adding (ii) and (iv), we get
8g = -8
⇒ g = -1
Substituting g = -1 in (iii), we get
-2 + c = -1
⇒ c = 1
Substituting g = -1 and c = 1 in (iv), we get
-2 + 4f – 1 = 5
⇒ 4f = 8
⇒ f = 2
Substituting g = -1, f = 2 and c = 1 in (i), we get
x2 + y2 – 2x + 4y + 1 = 0 ……….(v)
If (1, -4) satisfies equation (v), the four points are concyclic.
Substituting x = 1, y = -4 in L.H.S of (v), we get
L.H.S. = (1)2 + (-4)2 – 2(1) + 4(-4) + 1
= 1 + 16 – 2 – 16 + 1
= 0
= R.H.S.
Point (1, -4) satisfies equation (v).
∴ The given points are concyclic.

Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B)

Balbharti Maharashtra State Board Class 11 Maths Solutions Pdf Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B)

(I) Select the correct option from the given alternatives.

Question 1.
Given A = \(\left[\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right]\), I = \(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\) if A – λI is a singular matrix, then ___________
(a) λ = 0
(b) λ2 – 3λ – 4 = 0
(c) λ2 + 3λ – 4 = 0
(d) λ2 – 3λ – 6 = 0
Answer:
(b) λ2 – 3λ – 4 = 0
Hint:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) I Q1

Question 2.
Consider the matrices A = \(\left[\begin{array}{ccc}
4 & 6 & -1 \\
3 & 0 & 2 \\
1 & -2 & 5
\end{array}\right]\), B = \(\left[\begin{array}{cc}
2 & 4 \\
0 & 1 \\
-1 & 2
\end{array}\right]\), C = \(\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]\). Out of the given matrix products, ___________
(i) (AB)TC
(ii) CTC(AB)T
(iii) CTAB
(iv) ATABBTC
(a) Exactly one is defined
(b) Exactly two are defined
(c) Exactly three are defined
(d) all four are defined
Answer:
(c) Exactly three are defined
Hint:
A is of order 3 × 3, B is of order 3 × 2 and C is of order 3 × 1.
(AB)TC is of order 2 × 1.
CTC and (AB)T are of different orders.
CTC (AB)T is not defined.
CTAB is of order 1 × 2.
ATABBTC is of order 3 × 1.

Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B)

Question 3.
If A and B are square matrices of equal order, then which one is correct among the following?
(a) A + B = B + A
(b) A + B = A – B
(c) A – B = B – A
(d) AB = BA
Answer:
(a) A + B = B + A
Hint:
Matrix addition is commutative.
∴ A + B = B + A

Question 4.
If A = \(\left[\begin{array}{ccc}
1 & 2 & 2 \\
2 & 1 & -2 \\
a & 2 & b
\end{array}\right]\) is a matrix satisfying the equation AAT = 9I, where I is the identity matrix of order 3, then the ordered pair (a, b) is equal to ___________
(a) (2, -1)
(b) (-2, 1)
(c) (2, 1)
(d) (-2, -1)
Answer:
(d) (-2, -1)

Question 5.
If A = \(\left[\begin{array}{ll}
\alpha & 2 \\
2 & \alpha
\end{array}\right]\) and |A3| = 125, then α = ___________
(a) ±3
(b) ±2
(c) ±5
(d) 0
Answer:
(a) ±3
Hint:
|A3| = 125
|A|3 = 53 …….[∵ |An| = |A|n, n ∈ N]
∴ |A| = 5
\(\left|\begin{array}{ll}
\alpha & 2 \\
2 & \alpha
\end{array}\right|=5\)
α2 – 4 = 5
α2 = 9
∴ α = ± 3

Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B)

Question 6.
If \(\left[\begin{array}{ll}
5 & 7 \\
x & 1 \\
2 & 6
\end{array}\right]-\left[\begin{array}{cc}
1 & 2 \\
-3 & 5 \\
2 & y
\end{array}\right]=\left[\begin{array}{cc}
4 & 5 \\
4 & -4 \\
0 & 4
\end{array}\right]\), then ___________
(a) x = 1, y = -2
(b) x = -1, y = 2
(c) x = 1, y = 2
(d) x = -1, y = -2
Answer:
(c) x = 1, y = 2

Question 7.
If A + B = \(\left[\begin{array}{ll}
7 & 4 \\
8 & 9
\end{array}\right]\) and A – B = \(\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right]\), then the value of A is ___________
(a) \(\left[\begin{array}{ll}
3 & 1 \\
4 & 3
\end{array}\right]\)
(b) \(\left[\begin{array}{ll}
4 & 3 \\
4 & 6
\end{array}\right]\)
(c) \(\left[\begin{array}{ll}
6 & 2 \\
8 & 6
\end{array}\right]\)
(d) \(\left[\begin{array}{cc}
7 & 6 \\
8 & 12
\end{array}\right]\)
Answer:
(b) \(\left[\begin{array}{ll}
4 & 3 \\
4 & 6
\end{array}\right]\)

Question 8.
If \(\left[\begin{array}{cc}
x & 3 x-y \\
z x+z & 3 y-w
\end{array}\right]=\left[\begin{array}{ll}
3 & 2 \\
4 & 7
\end{array}\right]\), then ___________
(a) x = 3, y = 7, z = 1, w = 14
(b) x = 3, y = -5, z = -1, w = -4
(c) x = 3, y = 6, z = 2, w = 7
(d) x = -3, y = -7, z = -1, w = -14
Answer:
(a) x = 3, y = 7, z = 1, w = 14

Question 9.
For suitable matrices A, B, the false statement is ___________
(a) (AB)T = ATBT
(B) (AT)T = A
(C) (A – B)T = AT – BT
(D) (A + B)T = AT + BT
Answer:
(a) (AB)T = ATBT
Hint:
(AB)T = BTAT

Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B)

Question 10.
If A = \(\left[\begin{array}{cc}
-2 & 1 \\
0 & 3
\end{array}\right]\) and f(x) = 2x2 – 3x, then f(A) = ___________
(a) \(\left[\begin{array}{cc}
14 & 1 \\
0 & -9
\end{array}\right]\)
(b) \(\left[\begin{array}{cc}
-14 & 1 \\
0 & 9
\end{array}\right]\)
(c) \(\left[\begin{array}{cc}
14 & -1 \\
0 & 9
\end{array}\right]\)
(d) \(\left[\begin{array}{cc}
-14 & -1 \\
0 & -9
\end{array}\right]\)
Answer:
(c) \(\left[\begin{array}{cc}
14 & -1 \\
0 & 9
\end{array}\right]\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) I Q10

(II) Answer the following questions.

Question 1.
If A = diag[2, -3, -5], B = diag[4, -6, -3] and C = diag [-3, 4, 1], then find
i. B + C – A
ii. 2A + B – 5C.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q1
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q1.1
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q1.2

Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B)

Question 2.
If f(α) = A = \(\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]\), find
i. f(-α)
ii. f(-α) + f(α)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q2

Question 3.
Find matrices A and B, where
(i) 2A – B = \(\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\) and A + 3B = \(\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\)
(ii) 3A – B = \(\left[\begin{array}{ccc}
-1 & 2 & 1 \\
1 & 0 & 5
\end{array}\right]\) and A + 5B = \(\left[\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right]\)
Solution:
i. Given equations are
2A – B = \(\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\) …….(i)
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q3
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q3.1
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q3.2

Question 4.
If A = \(\left[\begin{array}{cc}
2 & -3 \\
3 & -2 \\
-1 & 4
\end{array}\right]\), B = \(\left[\begin{array}{ccc}
-3 & 4 & 1 \\
2 & -1 & -3
\end{array}\right]\), verify
i. (A + 2BT)T = AT + 2B
ii. (3A – 5BT)T = 3AT – 5B.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q4
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q4.1
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q4.2

Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B)

Question 5.
If A = \(\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\) and A + AT = I, where I is a unit matrix of order 2 × 2, then find the value of α.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q5

Question 6.
If A = \(\left[\begin{array}{cc}
1 & 2 \\
3 & 2 \\
-1 & 0
\end{array}\right]\) and B = \(\left[\begin{array}{ccc}
1 & 3 & 2 \\
4 & -1 & -3
\end{array}\right]\), show that AB is singular.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q6
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q6.1

Question 7.
If A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
1 & 2 & 3
\end{array}\right]\), B = \(\left[\begin{array}{ccc}
1 & -1 & 1 \\
-3 & 2 & -1 \\
-2 & 1 & 0
\end{array}\right]\), show that AB and BA are both singular matrices.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q7

Question 8.
If A = \(\left[\begin{array}{ccc}
1 & -1 & 0 \\
2 & 3 & 4 \\
0 & 1 & 2
\end{array}\right]\), B = \(\left[\begin{array}{ccc}
2 & 2 & -4 \\
-4 & 2 & -4 \\
2 & -1 & 5
\end{array}\right]\), show that BA = 6I.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q8

Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B)

Question 9.
If A = \(\left[\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right]\), B = \(\left[\begin{array}{cc}
1 & 2 \\
3 & -2
\end{array}\right]\), verify that |AB| = |A|.|B|.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q9

Question 10.
If Aα = \(\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]\), show that Aα . Aβ = Aα+β
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q10

Question 11.
If A = \(\left[\begin{array}{cc}
1 & \omega \\
\omega^{2} & 1
\end{array}\right]\), B = \(\left[\begin{array}{cc}
\omega^{2} & 1 \\
1 & \omega
\end{array}\right]\), where ω is a complex cube root of unity, then show that AB + BA + A – 2B is a null matrix.
Solution:
ω is the complex cube root of unity.
ω3 = 1
ω3 – 1 = 0
(ω – 1) (ω2 + ω + 1) = 0
ω = 1 or ω2 + ω + 1 = 0
But, ω is a complex number.
1 + ω + ω2 = 0 …….(i)
AB + BA + A – 2B
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q11
which is a null matrix.

Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B)

Question 12.
If A = \(\left[\begin{array}{lrr}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3
\end{array}\right]\), show that A2 = A.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q12

Question 13.
If A = \(\left[\begin{array}{ccc}
4 & -1 & -4 \\
3 & 0 & -4 \\
3 & -1 & -3
\end{array}\right]\), show that A2 = I.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q13

Question 14.
If A = \(\left[\begin{array}{cc}
3 & -5 \\
-4 & 2
\end{array}\right]\), show that A2 – 5A – 14I = 0.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q14

Question 15.
If A = \(\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\), show that A – 4A + 3I = 0.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q15

Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B)

Question 16.
If A = \(\left[\begin{array}{cc}
-3 & 2 \\
2 & -4
\end{array}\right]\), B = \(\left[\begin{array}{ll}
1 & x \\
y & 0
\end{array}\right]\) and (A + B)(A – B) = A2 – B2, find x and y.
Solution:
(A + B)(A – B) = A2 – B2
A2 – AB + BA – B2 = A2 – B2
-AB + BA = 0
AB = BA
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q16
By equality of matrices, we get
2 – 4x = -3x
∴ x = 2 and 2y = 2x
y = x
∴ y = 2
∴ x = 2, y = 2

Question 17.
If A = \(\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\) and B = \(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\), show that (A + B)(A – B) ≠ A2 – B2.
Solution:
We have to prove that
(A + B) . (A – B) ≠ A2 – B2
i.e., to prove that A(A – B) + B(A – B) ≠ A2 – B2
i.e., to prove that A2 – AB + BA – B2 ≠ A2 – B2
i.e., to prove that AB ≠ BA.
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q17
∴ AB ≠ BA

Question 18.
If A = \(\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]\), find A3.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q18
∴ A2 = I
Multiplying throughout by A, we get
A3 = A . I
∴ A3 = A

Question 19.
Find x, y if,
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q19
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q19.1
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q19.2

Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B)

Question 20.
Find x, y, z if
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q20
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q20.1
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q20.2

Question 21.
If A = \(\left[\begin{array}{ccc}
2 & 1 & -3 \\
0 & 2 & 6
\end{array}\right]\), B = \(\left[\begin{array}{ccc}
1 & 0 & -2 \\
3 & -1 & 4
\end{array}\right]\), find ABT and ATB.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q21
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q21.1

Question 22.
If A = \(\left[\begin{array}{cc}
2 & -4 \\
3 & -2 \\
0 & 1
\end{array}\right]\), B = \(\left[\begin{array}{ccc}
1 & -1 & 2 \\
-2 & 1 & 0
\end{array}\right]\), show that (AB)T = BTAT.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q22

Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B)

Question 23.
If A = \(\left[\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right]\), prove that An = \(\left[\begin{array}{cc}
1+2 n & -4 n \\
n & 1-2 n
\end{array}\right]\), for all n ∈ N.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q23
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q23.1

Question 24.
If A = \(\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\), prove that An = \(\left[\begin{array}{cc}
\cos n \theta & \sin n \theta \\
-\sin n \theta & \cos n \theta
\end{array}\right]\), for all n ∈ N.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q24
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q24.1

Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B)

Question 25.
Two farmers Shantaram and Kantaram cultivate three crops rice, wheat, and groundnut. The sale (in Rupees) of these crops by both the farmers for the month of April and may 2008 is given below,
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q25
Find
(i) the total sale in rupees for two months of each farmer for each crop.
(ii) the increase in sales from April to May for every crop of each farmer.
Solution:
(i) Total sale for Shantaram:
For rice = 15000 + 18000 = ₹ 33000.
For wheat = 13000 + 15000 = ₹ 28000.
For groundnut = 12000 + 12000 = ₹ 24000.
Total sale for Kantaram:
For rice = 18000 + 21000 = ₹ 39000
For wheat = 15000 + 16500 = ₹ 31500
For groundnut = 8000 + 16000 = ₹ 24000

Alternate method:
Matrix form
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q25.1
∴ The total sale of April and May of Shantaram in ₹ is ₹ 33000 (rice), ₹ 28000 (wheat), ₹ 24000 (groundnut), and that of Kantaram in ₹ is ₹ 39000(rice), ₹ 31500(wheat), and ₹ 24000 (groundnut).

(ii) Increase in sale from April to May for Shantaram:
For rice = 18000 – 15000 = ₹ 3000
For wheat = 15000 – 13000 = ₹ 2000
For groundnut = 12000 – 12000 = ₹ 0
Increase in sale from April to May for Kantaram:
For rice = 21000 – 18000 = ₹ 3000
For wheat = 16500 – 15000 = ₹ 1500
For groundnut = 16000 – 8000 = ₹ 8000

Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B)

Alternate method:
Matrix form
Maharashtra Board 11th Maths Solutions Chapter 4 Determinants and Matrices Miscellaneous Exercise 4(B) II Q25.2
∴ The increase in sales for Shantaram from April to May in each crop is ₹ 3000 (rice), ₹ 2000(wheat), 0 (groundnut), and that for Kantaram is ₹ 3000 (rice), ₹ 1500 (wheat), and ₹ 8000 (groundnut).

Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1

Balbharti Maharashtra State Board Class 11 Maths Solutions Pdf Chapter 6 Circle Ex 6.1 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 6 Circle Ex 6.1

Question 1.
Find the equation of a circle with
(i) centre at origin and radius 4.
(ii) centre at (-3, -2) and radius 6.
(iii) centre at (2, -3) and radius 5.
(iv) centre at (-3, -3) passing through point (-3, -6).
Solution:
(i) The equation of a circle with centre at origin and radius ‘r’ is given by
x2 + y2 = r2
Here, r = 4
∴ The required equation of the circle is x2 + y2 = 42 i.e., x2 + y2 = 16.

(ii) The equation of a circle with centre at (h, k) and radius ‘r’ is given by
(x – h)2 + (y – k)2 = r2
Here, h = -3, k = -2 and r = 6
∴ The required equation of the circle is
[x – (-3)]2 + [y – (-2)]2 = 62
⇒ (x + 3)2 + (y + 2)2 = 36
⇒ x2 + 6x + 9 + y2 + 4y + 4 – 36 = 0
⇒ x2 + y2 + 6x + 4y – 23 = 0

Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1

(iii) The equation of a circle with centre at (h, k) and radius ‘r’ is given by
(x – h)2 + (y – k)2 = r2
Here, h = 2, k = -3 and r = 5
The required equation of the circle is
(x – 2)2 + [y – (-3)]2 = 52
⇒ (x – 2)2 + (y + 3)2 = 25
⇒ x2 – 4x + 4 + y2 + 6y + 9 – 25 = 0
⇒ x2 + y2 – 4x + 6y – 12 = 0

(iv) Centre of the circle is C (-3, -3) and it passes through the point P (-3, -6).
Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1 Q1
The equation of a circle with centre at (h, k) and radius ‘r’ is given by
(x – h)2 + (y – k)2 = r2
Here, h = -3, k = -3, r = 3
The required equation of the circle is
[x – (-3)]2 + [y – (-3)]2 = 32
⇒ (x + 3)2 + (y + 3)2 = 9
⇒ x2 + 6x + 9 + y2 + 6y + 9 – 9 = 0
⇒ x2 + y2 + 6x + 6y + 9 = 0

Check:
If the point (-3, -6) satisfies x2 + y2 + 6x + 6y + 9 = 0, then our answer is correct.
L.H.S. = x2 + y2 + 6x + 6y + 9
= (-3)2 + (-6)2 + 6(-3) – 6(-6) + 9
= 9 + 36 – 18 – 36 + 9
= 0
= R.H.S.
Thus, our answer is correct.

Question 2.
Find the centre and radius of the following circles:
(i) x2 + y2 = 25
(ii) (x – 5)2 + (y – 3)2 = 20
(iii) \(\left(x-\frac{1}{2}\right)^{2}+\left(y+\frac{1}{3}\right)^{2}=\frac{1}{36}\)
Solution:
(i) Given equation of the circle is
x2 + y2 = 25
⇒ x2 + y2 = (5)2
Comparing this equation with x2 + y2 = r2, we get r = 5
Centre of the circle is (0, 0) and radius of the circle is 5.

(ii) Given equation of the circle is
(x – 5)2 + (y – 3)2 = 20
⇒ (x – 5)2 + (y – 3)2 = (√20)2
Comparing this equation with (x – h)2 + (y – k)2 = r2, we get
h = 5, k = 3 and r = √20 = 2√5
Centre of the circle = (h, k) = (5, 3)
and radius of the circle = 2√5.

Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1

(iii) Given the equation of the circle is
Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1 Q2
Comparing this equation with (x – h)2 + (y – k)2 = r2, we get
h = \(\frac{1}{2}\), k = \(\frac{-1}{3}\) and r = \(\frac{1}{6}\)
Centre of the circle = (h, k) = (\(\frac{1}{2}\), \(\frac{-1}{3}\)) and radius of the circle = \(\frac{1}{6}\)

Question 3.
Find the equation of the circle with centre
(i) at (a, b) and touching the Y-axis.
(ii) at (-2, 3) and touching the X-axis.
(iii) on the X-axis and passing through the origin having radius 4.
(iv) at (3, 1) and touching the line 8x – 15y + 25 = 0.
Solution:
(i) Since the circle is touching the Y-axis, the radius of the circle is X-co-ordinate of the centre.
Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1 Q3
∴ r = a
The equation of a circle with centre at (h, k) and radius r is given by
(x – h)2 + (y – k)2 = r2
Here, h = a, k = b
The required equation of the circle is
⇒ (x – a)2 + (y – b)2 = a2
⇒ x2 – 2ax + a2 + y2 – 2by + b2 = a2
⇒ x2 + y2 – 2ax – 2by + b2 = 0

(ii) Since the circle is touching the X-axis, the radius of the circle is the Y co-ordinate of the centre.
Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1 Q3.1
∴ r = 3
The equation of a circle with centre at (h, k) and radius r is given by
(x – h)2 + (y – k)2 = r2
Here, h = -2, k = 3
The required equation of the circle is
⇒ (x + 2)2 + (y – 3)2 = 32
⇒ x2 + 4x + 4 + y2 – 6y + 9 = 9
⇒ x2 + y2 + 4x – 6y + 4 = 0

Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1

(iii) Let the co-ordinates of the centre of the required circle be C (h, 0).
Since the circle passes through the origin i.e., O(0, 0)
OC = radius
⇒ \(\sqrt{(h-0)^{2}+(0-0)^{2}}=4\)
⇒ h2 = 16
⇒ h = ±4
Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1 Q3.2
the co-ordinates of the centre are (4, 0) or (-4, 0).
The equation of a circle with centre at (h, k) and radius r is given by
(x – h)2 + (y – k)2 = r2
Here, h = ± 4, k = 0, r = 4
The required equation of the circle is
⇒ (x – 4)2 + (y – 0)2 = 42 or (x + 4)2 + (y – 0)2 = 42
⇒ x2 – 8x + 16 + y2 = 16 or x2 + 8x + 16 + y2 = 16
⇒ x2 + y2 – 8x = 0 or x2 + y2 + 8x = 0

(iv) Centre of the circle is C (3, 1).
Let the circle touch the line 8x – 15y + 25 = 0 at point M.
Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1 Q3.3
CM = radius (r)
CM = Length of perpendicular from centre C(3, 1) on the line 8x – 15y + 25 = 0
Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1 Q3.4
The equation of a circle with centre at (h, k) and radius r is given by
(x – h)2 + (y – k)2 = r2
Here, h = 3, k = 1 and r = 2
The required equation of the circle is
⇒ (x – 3)2 + (y – 1)2 = 22
⇒ x2 – 6x + 9 + y2 – 2y + 1 = 4
⇒ x2 + y2 – 6x – 2y + 10 – 4 = 0
⇒ x2 + y2 – 6x – 2y + 6 = 0

Question 4.
Find the equation of the circle, if the equations of two diameters are 2x + y = 6 and 3x + 2y = 4 and radius is 9.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1 Q4
Given equations of diameters are 2x + y = 6 and 3x + 2y = 4.
Let C (h, k) be the centre of the required circle.
Since point of intersection of diameters is the centre of the circle,
x = h, y = k
Equations of diameters become
2h + k = 6 …..(i)
and 3h + 2k = 4 ……..(ii)
By (ii) – 2 × (i), we get
-h = -8
⇒ h = 8
Substituting h = 8 in (i), we get
2(8) + k = 6
⇒ k = 6 – 16
⇒ k = -10
Centre of the circle is C (8, -10) and radius, r = 9
The equation of a circle with centre at (h, k) and radius r is given by
(x – h)2 + (y – k)2 = r2
Here, h = 8, k = -10
The required equation of the circle is
⇒ (x – 8)2 + (y + 10)2 = 92
⇒ x2 – 16x + 64 + y2 + 20y + 100 = 81
⇒ x2 + y2 – 16x + 20y + 100 + 64 – 81 = 0
⇒ x2 + y2 – 16x + 20y + 83 = 0

Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1

Question 5.
If y = 2x is a chord of the circle x2 + y2 – 10x = 0, find the equation of the circle with this chord as diameter.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1 Q5
y = 2x is the chord of the given circle.
It satisfies the equation of a given circle.
Substituting y = 2x in x2 + y2 – 10x = 0, we get
⇒ x2 + (2x)2 – 10x = 0
⇒ x2 + 4x2 – 10x = 0
⇒ 5x2 – 10x = 0
⇒ 5x(x – 2) = 0
⇒ x = 0 or x = 2
When x = 0, y = 2x = 2(0) = 0
∴ A = (0, 0)
When x = 2, y = 2x = 2 (2) = 4
∴ B = (2, 4)
End points of chord AB are A(0, 0) and B(2, 4).
Chord AB is the diameter of the required circle.
The equation of a circle having (x1, y1) and (x2, y2) as end points of diameter is given by
(x – x1) (x – x2) + (y – y1) (y – y2) = 0
Here, x1 = 0, y1 = 0, x2 = 2, y2 = 4
The required equation of the circle is
⇒ (x – 0) (x – 2) + (y – 0) (y – 4 ) = 0
⇒ x2 – 2x + y2 – 4y = 0
⇒ x2 + y2 – 2x – 4y = 0

Question 6.
Find the equation of a circle with a radius of 4 units and touch both the co-ordinate axes having centre in the third quadrant. Solution:
The radius of the circle = 4 units
Since the circle touches both the co-ordinate axes and its centre is in the third quadrant,
the centre of the circle is C(-4, -4).
Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1 Q6
The equation of a circle with centre at (h, k) and radius r is given by (x – h)2 + (y – k)2 = r2
Here, h = -4, k = -4, r = 4
the required equation of the circle is
⇒ [x – (-4)]2 + [y – (-4)]2 = 42
⇒ (x + 4)2 + (y + 4)2 = 16
⇒ x2 + 8x + 16 + y2 + 8y + 16 – 16 = 0
⇒ x2 + y2 + 8x + 8y + 16 = 0

Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1

Question 7.
Find the equation of the circle passing through the origin and having intercepts 4 and -5 on the co-ordinate axes.
Solution:
Let the circle intersect X-axis at point A and intersect Y-axis at point B.
the co-ordinates of point A are (4, 0) and the co-ordinates of point B are (0, -5).
Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1 Q7
Since ∠AOB is a right angle,
AB represents the diameter of the circle.
The equation of a circle having (x1, y1) and (x2, y2) as end points of diameter is given by
(x – x1) (x – x2) + (y – y1) (y – y2) = 0
Here, x1 = 4, y1 = 0, x2 = 0, y2 = -5
The required equation of the circle is
⇒ (x – 4) (x – 0) + (y – 0) [y – (-5)] = 0
⇒ x(x – 4) + y(y + 5) = 0
⇒ x2 – 4x + y2 + 5y = 0
⇒ x2 + y2 – 4x + 5y = 0

Question 8.
Find the equation of a circle passing through the points (1, -4), (5, 2) and having its centre on line x – 2y + 9 = 0.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1 Q8
Let C(h, k) be the centre of the required circle which lies on the line x – 2y + 9 = 0.
Equation of line becomes
h – 2k + 9 = 0 …..(i)
Also, the required circle passes through points A(1, -4) and B(5, 2).
CA = CB = radius
CA = CB
By distance formula,
\(\sqrt{(\mathrm{h}-1)^{2}+[\mathrm{k}-(-4)]^{2}}=\sqrt{(\mathrm{h}-5)^{2}+(\mathrm{k}-2)^{2}}\)
Squaring both the sides, we get
⇒ (h – 1)2 + (k + 4)2 = (h – 5)2 + (k – 2)2
⇒ h2 – 2h + 1 + k2 + 8k + 16 = h2 – 10h + 25 + k2 – 4k + 4
⇒ -2h + 8k + 17 = -10h – 4k + 29
⇒ 8h + 12k – 12 = 0
⇒ 2h + 3k – 3 = 0 ……(ii)
By (ii) – (i) × 2, we get
7k = 21
⇒ k = 3
Substituting k = 3 in (i), we get
h – 2(3) + 9 = 0
⇒ h – 6 + 9 = 0
⇒ h = -3
Centre of the circle is C(-3, 3).
radius (r) = CA
Maharashtra Board 11th Maths Solutions Chapter 6 Circle Ex 6.1 Q8.1
The equation of a circle with centre at (h, k) and radius r is given by (x – h)2 + (y – k)2 = r2
Here, h = -3, k = 3, r = √65
The required equation of the circle is
⇒ [x – (-3)]2 + (y – 3)2 = (√65)2
⇒ (x + 3)2 + (y – 3)2 = 65
⇒ x2 + 6x + 9 + y2 – 6y + 9 – 65 = 0
⇒ x2 + y2 + 6x – 6y – 47 = 0

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Balbharti Maharashtra State Board 11th Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry Important Questions and Answers.

Maharashtra State Board 11th Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 1.
How is the structural formula of a molecule represented? Give an example.
Answer:
Structural formula:
i. Structural formula of a molecule shows all the constituent atoms denoted with their respective chemical symbols and all the covalent bonds therein represented by a dash joining mutually bonded atoms.
ii. Structural formula of methane is:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 1

Question 2.
Write a note on Lewis structures with the help of an example.
Answer:
Lewis structures:
i. The electron dot structures are called as Lewis structures,
e. g. The Lewis structure of methane is shown below.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 2
ii. All the valence electrons of carbon and hydrogen are shown as dots around them. Two dots drawn between two atoms indicate one covalent bond between them. The covalent bond can be represented by a dash joining mutually bonded atoms.
iii. The dash formula represents simplified Lewis formula of the molecule.
e.g. Dash formula of methane:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 3

Question 3.
How is the condensed formula of an organic molecule written?
Answer:
The complete structural formula is further simplified by hiding some or all the covalent bonds and indicating the number of identical groups attached to an atom by a subscript. The resulting formula of a compound is known as condensed formula.
e.g.

  1. The condensed formula of ethane is written as CH3-CH3 or CH3CH3.
  2. The condensed formula of n-pentane is written as CH3CH2CH2CH2CH3 or CH3(CH2)3CH3.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 4.
What do you understand by the term bond-line formula?
Answer:
Bond-line or zig-zag formula:
i. The condensed formula is simplified into bond-line formula, which is also known as zig-zag formula.
ii. In this representation of an organic molecule, the symbols of carbon and hydrogen atoms are not written. The carbon-carbon bonds are represented by lines drawn in a zig-zag manner
iii. The terminals of the zig-zag line indicate methyl groups and the intersection of lines denote a carbon atom bonded to appropriate number of hydrogen atoms which satisfy the tetravalency of the carbon atom.
e.g. Propane is represented by bond-line or zig-zag formula:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 4
iv. If a compound contains heteroatom(s) or H-atom(s) bonded to heteroatom(s), then they are represented by their symbols.
e.g. Ethanol is represented by bond-line or zig-zag formula:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 5

Question 5.
Name the different methods used to represent three-dimensional structure of a molecule on the paper.
Answer:
Four different methods are used to represent three-dimensional structure of a molecule on the paper:

  1. Wedge formula
  2. Fischer projection formula or cross formula
  3. Newman projection formula
  4. Sawhorse or andiron or perspective formula

Question 6.
Write a short note on: Wedge formula.
Answer:
Wedge formula:
i. The three-dimensional (3-D) structure of organic molecules can be represented on plane paper by using solidMaharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 6 and dashed Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 7 wedges and normal line (-) for single bonds.
ii. In this formula, the solid wedge is used to indicate a bond projecting up from the plane of paper, towards the reader (observer), whereas the dashed wedge is used to depict a bond going backward, below the paper away from the reader.
iii. The bonds lying in plane of the paper are depicted by using a normal line (-).
iv. Wedge formula of methane molecule is shown below:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 8

Question 7.
How is Fischer projection formula of a molecule drawn? Explian by giving an example.
Answer:
Fischer projection (cross) formula:

  • In this representation, a three dimensional molecule is projected on plane of paper.
  • Fischer projection formula can be drawn by visualizing the molecule with its main carbon chain vertical.
  • Each carbon on the vertical chain is represented by a cross. By convention, the horizontal lines of the cross represent bonds projecting up from the carbon and the vertical lines represent the bonds going below the carbon.

Fischer projection formula of a molecule along with its wedge formula is represented below:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 9
[Note: Fischer projection formula is more commonly used in carbohydrate chemistry.]

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 8.
Write the Fischer projection and wedge formula for 2-chloro-propan-2-ol.
Answer:
2-Chloropropan-2-ol has formula CH3C(Cl)(OH)CH3.
Fischer projection and wedge formula for 2-chloropropan-2-ol can be given as:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 10

Question 9.
Convert the following wedge formula to Fischer projection formula:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 11
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 12

Question 10.
Explain how will you represent the Newman projection formula and Sawhorse formula of ethane molecule?
Answer:
i. Newman projection formula of ethane molecule:
a. A Newman projection views the carbon-carbon single bond directly head-on. The front carbon atom is represented by a point while the rear carbon atom is represented by a circle. The point is drawn at the centre of the circle.
b. Bonds attached to the front carbon atom are represented by three lines drawn at an angle of 120° to each other from the centre of the circle and bonds attached to the rear carbon atom are represented by three lines drawn at an angle of 120° to each other from the circumference of the circle.
c. Newman projections of ethane molecule is represented in adjacent diagram.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 13

ii. Sawhorse (or andiron or perspective) formula of ethane molecule:
a. In this representation, a C-C single bond is represented by a long slanting line. The lower end of the line represents the front carbon and the upper end represents the rear carbon.
b. The remaining three bonds at the two carbons are shown to radiate from the respective carbons. (As the central C-C bond is drawn rather elongated the bonds radiating from the front and rear carbons do not intermingle.)
c. Sawhorse formula of ethane molecule is represented in adjacent diagram.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 14

Question 11.
Explain the classification of organic compounds based on carbon skeleton.
Answer:
On the basis of their carbon skeleton, organic compounds are classified into two main groups:
i. Acyclic or aliphatic or open chain compounds:
a. Organic compounds in which carbon atoms are joined to form an open chain are called aliphatic compounds.
b. Their structure may consist of straight chains (in which carbon atoms are bonded to one or two other carbon atoms) or branched chains (in which at least one carbon atom is bonded to three or four other carbon atoms).
e.g.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 15

ii. Cyclic or closed chain or ring compounds:
a. Organic compounds in which carbon atoms are joined to form one or more closed rings with or without hetero atom are called cyclic compounds.
b. They are further divided into two types: Homocyclic and heterocyclic compounds.
1. Homocyclic or carbocyclic compounds: The cyclic organic compounds which have a ring made up of only carbon atoms are called as homocyclic or carbocyclic compounds.
They are further divided into:
i. Alicyclic compounds: These are cyclic compounds (ring of 3 or more C-atoms) exhibiting properties similar to those of aliphatic compounds.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 16
ii. Aromatic compounds: These compounds have special stability.
Aromatic compounds are further classified as benzenoid and non-benzenoid aromatics.
a. Benzenoid aromatics contain at least one benzene ring in the structure.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 17
b. Non-benzenoid aromatics contain an aromatic ring, other than benzene.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 18

2. Heterocyclic compounds: Cyclic organic compounds which contain one or more heteroatoms (such as O, N, S, etc.) in the ring are called heterocyclic compounds.
They are further divided into:
i. Heterocyclic aromatic compounds: Aromatic compounds which contain at least one heteroatom in the ring are called heterocyclic aromatic (hetero-aromatic) compounds.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 19
ii. Heterocyclic non-aromatic compounds: Alicyclic compounds, which contain at least one heteroatom in the ring are called heterocyclic non-aromatic compounds (hetero-alicyclic) compounds.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 20

Question 12.
What is a functional group? Give two examples.
Answer:
Functional group:
i. A part of an organic molecule which undergoes change as a result of a reaction is called functional group.
OR
An atom or a group of atoms in the organic molecule which determines its characteristic chemical
properties is called functional group.
e.g. a. The functional group in alcohols is -OH group.
b. The functional group in aldehydes is -CHO group.

ii. There are a large variety of functional groups in organic compounds. Hence, organic compounds can be classified based on the nature of functional group present in them.
iii. The resulting individual class of compounds is called a family and is named after the constituent functional group.
e.g. Family of alcohols, which includes organic compounds having -OH functional group.

Note: Functional groups in organic compounds:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 21
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 22
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 23

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 13.
Indicate all the functional groups present in the following compounds.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 24
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 25

Question 14.
Identify the functional group in the following compounds:
i. n-Butyl alcohol
ii. Propanone
iii. Acetylene
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 26

Question 15.
Write the name of the family of the following organic compounds:
i. CH3(CH2)3CH2Cl
ii. CH3CH2CH2NH2
iii. CH3CH2COCH3
iv. CH3CH2OCH3
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 27

Question 16.
Write a note on homologous series.
Answer:
Homologous series:

  • A series of compounds of the same family in which each member has the same type of carbon skeleton and functional group, and differs from the next member by a constant difference of one methylene group (-CH2-) in its molecular and structural formula is called as homologous series.
  • The individual members of the series are called homologues and they can be represented by a same general formula.
  • Two successive homologues differ by one – CH2 (methylene) unit (i.e., molecular weight of each successive member differs by 14 units).
  • Homologues show similar chemical properties.
  • Physical properties (like melting point, boiling point, density, solubility, etc.) of the homologues show a gradual change with increase in the molecular weight of the member.

Note: Consider the homologous series of straight chain aldehydes. The boiling point increases down the series as molecular weight increases.

NameMolecular formulaBoiling point
FormaldehydeHCHO-21 °C
AcetaldehydeCH3CHO21 °C
PropionaldehydeC2H5CHO48 °C
ButyraldehydeC3H7CHO75 °C
ValeraldehydeC4H9CHO103 °C

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 17.
Alkanes constitute a homologous series of straight chain saturated hydrocarbons. Write down the structural formulae of the first five homologues of this series. Write their molecular formulae and deduce the general formula of such homologous series.
Answer:
The first five homologues are generated by adding one – CH2 – at a time, starting with the first homologue, methane (CH4).
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 28
By counting carbon and hydrogen atoms in the five homologues, we get their molecular formulae as CH4, C2H6, C3H8, C4H10 and C5H12.
Comparing these molecular formulae and assigning the number of carbon atoms as ‘n’, the following general formula is deduced: CnH2n+2.

Question 18.
Write down structural formulae of (i) the third higher and (ii) the second lower homologue of CH3CH2COOH.
Answer:
i. Structural formula of the third higher homologue is obtained by adding three – CH2 – units to the carbon chain of the given structure.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 29
ii. Structural formula of the second lower homologue is obtained by removing two – CH2 – units from the carbon chain of the given structure.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 30

Question 19.
Write the general formula of homologous series of alcohols.
Answer:
General formula of homologous series of alcohols can be represented as, CnH2n+1OH (where n = 1, 2, 3, …).

Question 20.
Write the name and molecular formulae of the first three higher homologues of propyl chloride.
Answer:
General formula: CnH2n+1Cl (where n = 1, 2, 3, …)

No. of carbon atomsMolecular formulaName
n = 3C3H7ClPropyl chloride
n = 4C4H9ClButyl chloride
n = 5C5H11ClPentyl chloride
n = 6C6H13ClHexyl chloride

Question 21.
What is the molecular formula of:
i. first higher homologue of propionic acid?
ii. first lower homologue of propionic acid?
Answer:
i. First higher homologue of propionic acid:
(Addition of 1-CH3 group to CH3CH2COOH)
Butyric acid: C3H7COOH

ii. First lower homologue of propionic acid:
(1-CH3 group less from CH3CH3COOH)
Acetic acid: CH3COOH

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 22.
How are the saturated (sp3) carbon atoms in a molecule classified based on the number of other carbon atoms bonded to it? Give an example that has all the four types of carbon atoms.
Answer:
i. The saturated (sp3) carbons in a molecule are classified as primary, secondary, tertiary and quaternary in accordance with the number of other carbons bonded to it by single bonds.

  • Primary carbon atom (1°): This carbon atom is bonded to only one other carbon atom. Terminal carbon atoms are always 1° carbon atoms.
  • Secondary carbon atom (2°): This carbon atom is bonded to two other carbon atoms.
  • Tertiary carbon atom (3°): This carbon atom is bonded to three other carbon atoms.
  • Quaternary carbon atom (4°): This carbon atom is bonded to four other carbon atoms.

ii. An example molecule having all the four types of carbon atoms:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 31
Thus, in 2,2,5-trimethylhexane, there are five primary, two secondary, one tertiary and one quaternary carbon atoms.
[Note: Hydrogen atoms attached to primary’, secondary and tertiary carbon atoms are referred to as primary, secondary and tertiary H-atoms respectively.]

Question 23.
Give common name/trivial name of the following compounds.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 32
Answer:
i. Lactic acid
ii. Glycine
iii. Glycerol
iv. Chloroform

Question 24.
Give a basic idea about IUPAC nomenclature system and comment on IUPAC names of straight chain alkanes.
Answer:
i. International Union of Pure and Applied Chemistry (IUPAC) was founded (in 1919) and a systematic method of nomenclature for organic compounds was developed under its banner.
ii. This was done because of growing number of organic compounds with increasingly complicated structures and it was difficult to name them. To simplify and avoid confusions, IUPAC system is accepted and widely used all over the world today. According to this system, a unique name is given to each organic compound.

Following things are taken into consideration while naming a particular organic compound:

  • To arrive at the IUPAC name of an organic compound, its structure is considered to be made of three main parts: parent hydrocarbon, branches and functional groups.
  • The IUPAC names of a compound are obtained by modifying the name of its parent hydrocarbon further incorporating names of the branches and functional groups as prefix and suffix.

IUPAC names of straight chain alkanes:
a. The homologous series of straight chain alkanes forms the parent hydrocarbon part of the IUPAC names of aliphatic compounds.
b. The IUPAC name of a straight chain alkane is derived from the number of carbon atoms it contains.
c. IUPAC names of the first twenty alkanes are mentioned in the following table:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 33

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 25.
Match the following:

Column – IColumn – II
i.C19H40a.Undecane
ii.C12H26b.Nonadecane
iii.C11H24c.Dodecane
d.Nonane

Answer:
i – b,
ii – c,
iii – a

Question 26.
Explain the following with two examples:
i. straight chain alkyl groups
ii. branched chain alkyl group
Answer:
i. Straight chain alkyl group: It is obtained by removing one H-atom from the terminal carbon of an alkane molecule.
ii. It is named by replacing ‘ane’ of the alkane by ‘yl’.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 34
iii. Branched chain alkyl group: It is obtained by removing a H-atom from any one of the non-terminal carbons of an alkane or any H-atom from a branched alkane.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 35

Note: Straight chain alkyl groups
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 36
Trivial names of small branched alkyl groups
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 37

Question 27.
Write names of following groups.
i. C6H5
ii. (CH3)3C-
Answer:
i. Phenyl group
ii. tert-Butyl group

Question 28.
State the rules to assign IUPAC nomenclature of a branched chain alkane.
Answer:
i. Select the longest continuous chain of carbon atoms to be called the parent chain. All other carbon atoms not included in this chain constitute, side chains or branches or alkyl substituents. For example:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 38
Parent chain has five carbon atoms and -CH3 group is alkyl substituent.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 39
Parent chain has six carbon atoms and methyl group is the alkyl substituent.
If two chains of equal length are located, then the one with maximum number of substituents is selected as the parent chain.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 40
Parent chain hexane with one alkyl substituent is the incorrect chain.

ii. The parent chain is numbered from one end to the other to locate the position, called locant number of the alkyl substituent. The numbering is done in that direction which will result in lowest possible locant numbers.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 41
iii. Names of the alkyl substituents are added as prefix to the name of the parent alkane. Different alkyl substituents are listed in alphabetical order with each substituent name preceded by the appropriate locant number. The name of the substituent is separated from the locant number by a hyphen.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 42
The name is 4-ethyl-3-methylheptane and not 3-methyl-4-ethylheptane.
iv. When both the numberings give the same set of locants, that numbering is chosen which gives smaller locant to the substituent having alphabetical priority.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 43
The name is 3-ethyl-4-methylhexane and not 3-methyl-4-ethylhexane.

v. If two or more identical substituents are present the prefix di (for 2), tri (for 3), tetra (for 4) and so on, are used before the name of the substituent to indicate how many identical substituents are there. The locants of identical substituents are listed together, separated by commas.

There must be as many numbers in the name as the substituents. A digit and an alphabet are separated by hyphen. The prefixes di, tri, tetra, sec and tert are ignored in alphabetizing the substituent names. Substituent and parent hydrocarbon names are joined into one word.

vi. Branched alkyl group having no accepted trivial name is named with the longest continuous chain beginning at the point of attachment as the base name. Carbon atom of this group attached to parent chain is numbered as ‘1’. The name of such substituent is enclosed in bracket.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 44

Question 29.
Complete the following table.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 45
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 46
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 47

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 30.
Explain the rules for IUPAC nomenclature of unsaturated hydrocarbons (Alkenes and Alkynes).
Answer:
While writing IUPAC names of alkenes and alkynes following rules are to be followed in addition to rules for alkanes.
i. The longest continuous chain must include carbon-carbon multiple bond. Thus, the longest continuous chains in 1 and II contain four and six carbons, respectively.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 48
ii. Numbering of this chain must be done such that carbon-carbon multiple bond has the lowest possible locant number.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 49
iii. The ending ‘ane’ of alkane is replaced by ‘ene’ for an alkene and ‘yne’ for an alkyne.
iv. Position of carbon atom from which multiple bond starts is indicated by smaller locant number of two multiple bonded carbons before the ending ‘ene’ or ‘yne’. e.g.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 50
v. If the multiple bond is equidistant from both the ends of a selected chain, then carbon atoms are numbered from that end, which is nearer to first branching.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 51
vi. If the parent chain contains two double bonds or two triple bonds, then it is named as diene or diyne. In all these cases ‘a’ of ‘ane’ (alkane) is retained.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 52
vii. If the parent chain contains both double and triple bond, then carbon atoms are numbered from that end where multiple bond is nearer. Such systems are named by putting ‘en’ ending first followed by ‘yne’. The number indicating the location of multiple bond is placed before the name.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 53
viii. If there is a tie between a double bond and a triple bond, the double bond gets the lower number.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 54

Question 31.
Give IUPAC rules for naming simple monocyclic hydrocarbons.
Answer:
i. A saturated monocyclic hydrocarbon is named by attaching prefix ‘cyclo’ to the name of the corresponding open chain alkane.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 55
ii. An unsaturated monocyclic hydrocarbon is named by substituting ‘ene’, ‘yne’, etc. for ‘ane’ in the name of corresponding cycloalkane.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 56
iii. If side chains are present then the numbering of the ring carbon is started from a side chain.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 57
iv. If alkyl groups contain greater number of carbon atoms than the ring, the compound is named as derivative of alkane. Ring is treated as substituent.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 58

Question 32.
Give the IUPAC names of the following compounds:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 59
Answer:
i. 1-Ethyl-1-methyl-2-propylcyclohexane
ii. 1,2-Dimethylcyclobutane
iii. Cyclopentene
iv. 3-Cyclopropylhex-1-yne

Question 33.
Explain in short how naming of monofunctional compound is done.
Answer:
Naming of monofunctional compounds: When a molecule contains only one functional group, the longest carbon chain containing that functional group is identified as the parent chain and numbered so as to give the smallest locant number to the carbon bearing the functional group. The parent name is modified by applying appropriate suffix. Location of the functional group is indicated where necessary and when it is NOT numbered ‘1’.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 60
When the functional group cannot be used as suffix, and can be only the prefix, the molecule is named as parent alkane carrying the functional group as substituent at specified carbon.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 61

Question 34.
Complete the following.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 62
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 63

Question 35.
Give examples of functional groups which can appear only as prefix?
Answer:
Functional groups which can appear only as prefix are as follows:
i. Nitro group (-NO2)
ii. Halides (-X): Represented by prefix “halo” (like fluoro, chloro, bromo, iodo).
iii. Alkoxy group (-OR): Groups like methoxy (-OCH3), ethoxy (-OC2H5), etc.

Note: Functional groups appearing as prefix and suffix

Functional GroupPrefixSuffix
-COOHCarboxy– oic acid
-COORalkoxycarbonyl– oate
-COClChlorocarbonyl– oyl chloride
-CONH2Carbamoyl– amide
-CNCyano– nitrile
-CHOFormyl– al
-CO-Oxo– one
-OHHydroxy– ol
-NH2Amino– amine

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 36.
Write a note on principal functional group.
Answer:
i. The organic compounds possessing two or more functional groups (same or different) in their molecules are called polyfunctional compounds.
ii. When there are two or more different functional groups, one of them is selected as the principal functional group and the others are considered as substituents.
iii. The principal functional group is used as suffix of the IUPAC name while the other substituents are written with appropriate prefixes. The principal functional group is decided on the basis of the following order of priority:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 64

Question 37.
Explain the rules for naming mono or polyfunctional compounds.
Answer:

  • Identification of parent chain: The longest carbon chain containing the single or the principal functional group is identified as parent chain.
    e.g. Ethers are named as alkoxyalkane. While naming it, the larger alkyl group is chosen as parent chain.
  • Numbering of parent chain: It is done so as to give the lowest possible locant numbers to the carbon atom of this functional group.
  • Suffix: The name of the parent hydrocarbon is modified adequately with appropriate suffix in accordance with the single/principal functional group.
  • Names of the other functional groups (if any) are attached to this modified name as prefixes. The locant numbers of all the functional groups are indicated before the corresponding suffix/prefix.

[Note: The carbon atom in -COOR, -COCl, -CONH2, -CN and -CHO is C – 1 by rule and therefore, is not mentioned in the IUPAC name.]

Question 38.
Write IUPAC names for the following structures:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 65
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 66
Here, the principal functional group, ketone is located at the C-3 on the five carbon chain. The -OH group, the hydroxyl substituent is at C-2. Therefore, the IUPAC name is 2-hydroxypentan-3-one.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 67
Here, the principal functional group is carboxylic acid. The amino substituent is located at C-3 on four carbon chain. Therefore, the IUPAC name 3-aminobutanoic acid.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 68
Here, two same functional groups are present at C-1 and C-2 position. They are indicated by using the term ‘di’ before the class suffix. Therefore, the IUPAC name is propane-1,2-diol.
iv. CH2 = CH – CH = CH2
Here, the parent chain contains two double bonds at C-1 and C-3, hence it is named as diene. Therefore, the IUPAC name is buta-1,3-diene.

Question 39.
Give IUPAC rules for naming substituted benzene.
Answer:
i. Monosubstituted benzene : The IUPAC name of a monosubstituted benzene is obtained by placing the name of substituent as prefix to the parent skeleton which is benzene.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 69

ii. Some monosubstituted benzenes have trivial names which may show no resemblance with the name of the attached substituent group. For example, methylbenzene is known as toluene, aminobenzene as aniline, hydroxybenzene as phenol and so on. The common names written in the bracket are also used universally and accepted by IUPAC.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 70

iii. If the alkyl substituent is larger than benzene ring (7 or more carbon atoms) the compound is named as phenyl-substituted alkane.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 71

iv. Benzene ring can as well be considered as substituent when it is attached to an alkane with a functional group.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 72

v. Disubstituted benzene derivatives:
Common names of the three possible isomers of disubstitued benzene derivatives are given using one of the prefixes ortho (o-), meta (m-) or para (p-).
IUPAC system, however, uses numbering instead of prefixes, o-, m-, or p-.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 73

vi. If two substituents are different, then they enter in alphabetical order.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 74

vii. If one of the two groups gives special name to the molecule then the compound is named as derivative of the special compound.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 75

viii. Trisubstituted benzene derivatives : If more than two substituents are attached to benzene ring, numbers are used to indicate their relative positions following the alphabetical order and lowest locant rule. In some cases, common name of benzene derivatives is taken as parent compound.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 76

Question 40.
Write the structural formula of following derivatives of benzene.
i. 2,4,6-Trinitrotoluene
ii. 1-Chloro-2,4-dinitrobenzene
iii. 4-Broniobenzaldehyde
iv. 1-Iodo-3-phenylpentane
v. 2-Hydroxybenzaldehyde
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 77

Question 41.
Write the IUPAC names of the following compounds.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 78
Answer:
i. 5-Phenylpent-1-ene
ii. 2-Hydroxybenzoic acid

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 42.
Define the terms:
i. Isomerism
ii. Isomers
Answer:
i. Isomerism: The phenomenon of existence of two or more compounds possessing the same molecular formula is known as isomerism.

ii. Isomers: Two or more compounds having the same molecular formula are called as isomers of each other. [Note: The isomers are different compounds having same molecular formula and therefore they exhibit different physical and chemical properties.]

Question 43.
Define: Structural isomerism
Answer:
Structural isomerism: When two or more compounds have same molecular formula but different structural formulae, they are said to be structural isomers of each other and the phenomenon is known as structural isomerism.

Question 44.
Define: Stereoisomerism
Answer:
When different compounds have the same structural formula but different relative arrangement of groups/atoms in space, that is, different spatial arrangement of groups/atoms, it is called as stereoisomerism.

Question 45.
Give different types of structural isomerism that organic compounds can exhibit.
Answer:
Different types of structural isomerism that organic compounds may exhibit are as follows:

  • Chain isomerism
  • Position isomerism
  • Functional group isomerism
  • Metamerism
  • Tautomerism

Question 46.
Explain chain isomerism in alkanes with two suitable examples.
Answer:
Chain isomerism: When two or more compounds have the same molecular formula but different parent chain or different carbon skeletons, it is referred to as chain isomerism and such isomers are known as chain isomers.
e.g.
i. Butane (C4H10) exists in two isomeric forms:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 79
Here, n-butane contains longest chain of four carbon atoms whereas isobutane contains longest chain of three carbon atoms. Such isomers having different carbon skeletons are called as chain isomers.
[Note: Methylpropane has no other branched isomers, hence locant (2) can be dropped.]

ii. Pentene (C5H12) exists in three isomeric forms:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 80
[Note: The numbers of chain isomers increase with the increase in the number of carbon atoms in the molecule.]

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 47.
Write a note on position isomerism.
Answer:
i. The phenomenon in which diffèrent compounds having the same functional group at different positions on the parent chain is known as position isomerism.
ii. e.g. But-1-ene and but-2-ene are position isomers of each other as they have the same molecular formula (C4H8) and the sanie carbon skeleton hut the double bonds are located at different positions.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 81

Question 48.
Define: Functional group isomerism
Answer:
Different compounds having the same molecular formula but different functional groups are called as futictional group isomers and the phenomenon is called as junctional group isomerism.
e.g. CH3 – O – CH3 (Dimethyl ether) and C2H5 – OH (ethyl alcohol) have same molecular formula (C2H6O) but former has ether (-O-) functional group and the latter has alcoholic (-OH) functional group.

Question 49.
Explain: Metamerism
Answer:
i. Metamerism may be defined as a type of isomerism in which different compounds have same molecular formula and the same functional group but have unequal distribution of carbon atoms on either side of the functional group. Such isomers are known as metamers.

ii. e.g. Ether with molecular formula C4H10O has three metamers. They have same functional group as ether but have different distribution of carbon atoms attached to etheral oxygen. These metamers are:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 82

Question 50.
Explain: Tautomerism
Answer:
When same compound exists as mixture of two or more structurally distinct molecules which are in rapid equilibrium with each other, then the phenomenon is referred to as tautomerism. Such interconverting isomers are called tautomers.
i. In nearly all the cases, it is the proton which shifts from one atom to another atom in the molecule to form its tautomer.
ii. Keto-enol tautomerism is very common form of tautomerism.
iii. Here, a hydrogen atom shifts reversibly from the a-carbon of the keto form to oxygen atom of the enol. This type of isomerism is known as keto-enol tautomerism.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 83

Question 51.
Explain the terms substrate, reagent and byproduct in an organic reaction.
Answer:

  • Organic molecules primarily contain various types of covalent bonds between the constituent atoms. During an organic reaction, molecules of the reactant undergo change in their structure. A covalent bond at a carbon atom in the reactant is broken and a new covalent bond is formed at it, giving rise to the product.
  • The reactant that provides carbon to the new bond is called substrate. In other words, substrate is a chemical species which reacts with reagent to give corresponding products.
  • The other reactant which brings about this change is called reagent.
  • Apart from the product of interest, some other products are also formed in an organic reaction. These are called byproducts.

e.g. In following reaction, methane is the substrate and chlorine is the reagent. The product of interest is methyl chloride and the byproduct is HCl.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 84

Question 52.
Explain: Organic reactions are often a multi-step process.
Answer:

  • Organic molecules contain covalent bonds, which are made of valence electrons of the constituent atoms.
  • During an organic reaction, molecules of the reactant undergo change in their structure due to redistribution of valence electrons of constituent atoms.
  • This results in the bond breaking or bond forming processes as organic reaction proceeds. However, these processes are usually not instantaneous.
  • As a result of this, the overall organic reaction occurs by the formation of one or more unstable species called intermediates.

Thus, organic reactions are often a multi-step process.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 53.
What do you mean by reaction mechanism? Give importance of reaction mechanism.
Answer:
i. Mechanism of an organic reaction is the complete step by step description of exactly which bonds break and which bonds form, in what manner and in what order to give the observed products.

ii. In general, reaction mechanism is a sequential account of:

  • the electron movement taking place during each step
  • the bond cleavage and/or bond formation
  • accompanying changes in energy and shapes of various species and
  • rate of the overall reaction.

The individual steps, constitute the reaction mechanism.

iii. Importance of reaction mechanism:
The knowledge of mechanism of a reaction is useful for understanding the reactivity of the concerned organic compounds and, in turn, helpful for planning synthetic strategies.

Question 54.
What are the different ways in which a covalent bond fission can takes place?
Answer:
The covalent bond fission/cleavage takes place in two ways:

  1. Homolytic fission
  2. Heterolytic fission

Question 55.
Explain homolytic cleavage of a bond with suitable example.
Answer:
Homolytic cleavage:
i. A covalent bond consists of two electrons (i.e., a bond pair of electrons) shared between the two bonded atoms.
ii. In homolytic cleavage of a covalent bond, one of the two electrons go to one of the bonded atoms and the other is bound to the other atom.
iii. This type of cleavage gives rise to two neutral species carrying one unpaired electron each. Such a species with single unpaired electron is called as free radical.
iv. The free radicals are short lived (transitory) and unstable. Therefore, they are very reactive, having tendency to seek an electron for pairing.
v. Homolytic cleavage can be represented as follows:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 85
where movement of a single electron is represented by a half-headed curved arrow or fish hook,
vi. Thus, the symmetrical breaking of a covalent bond between two atoms such that each atom retains one electron of the shared pair forming free radicals is known as homolytic cleavage (homolysis).

Question 56.
What conditions favour homolytic cleavage?
Answer:
Homolytic cleavage is favoured in the presence of UV radiation or in presence of catalyst such as peroxides (H2O2) or at high temperatures.

Question 57.
Write a short note on free radical.
Answer:
Free radical:
i. A species with unpaired electron is called free radical.
OR
An uncharged species which is electrically neutral and which contains a single electron is called free radical.
ii. A free radical is highly reactive, unstable and therefore has a transitory existence (short-lived).
iii. Free radicals are formed as reaction intermediate which subsequently react with another radical/molecule to restore stable bonding pair.
iv. In a carbon free radical, the carbon atom having unpaired electron is sp hybridized and has planar trigonal geometry.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 86
v. The alkyl free radicals are classified as primary, secondary or tertiary depending upon the number of carbon atoms attached to the C-atom carrying the unpaired electron.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 87
vi. Stability of alkyl free radicals decreases in the order 3° > 2° > 1° > methyl free radical.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 58.
Explain heterolytic cleavage with suitable example.
Answer:
Heterolytic cleavage:
i. In hetcrolytic cleavage of a covalent bond, both shared electrons go to one of the two bonded atoms.
ii. This type of cleavage gives rise to two charged species, one with negative charge (anion) and the other with positive charge (cation).
iii. The negatively charged species has the more electronegative atom which has taken away the shared pair of electrons with it.
iv. Heterolytic cleavage can be represented as follows:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 88
Where B is more electronegative than A and the movement of an electron pair is represented by a curved arrow.
v. Thus, the unsymmetrical breaking of a covalent bond between two atoms in such a way that the more electronegative atom acquires both the electrons of the shared pair. thereby fòrming charged ions is known as heterolytic fission or heterolysis.

Question 59.
What is carbocation? Explain with the help of an example and comment on the stability of carbocation.
Answer:
Carbocation:
i. A carbon atom having sextet of electrons and a positive charge is called a carbocation.
ii. They are unstable and highly reactive species formed as intermediates in many organic reactions.
iii. In a carbocation, the central carbon atom is sp2 hybridized and has trigonal planar geometry.
e. g. In a methyl carbocation C If, the positively charged carbon atom is covalently bonded to three hydrogen atoms. It is planar with H-C-H bond angle of 120°.
The unhybridized pz orbital is vacant and lies perpendicular to the plane containing the three sigma C-H bonds.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 89
iv. Carbocation are classified as primary (1°), secondary (2°) and tertiary (3°).
v. The stability of carbocations decreases in the order:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 90

Question 60.
Write a short note on carbanion.
Answer:
Carbanion:
i. Carbanion is a species with a negatively charged carbon atom having complete octet (eight electrons) in its valence shell.
ii. It is formed due to heterolytic bond fission when carbon atom is bonded to the more electropositive atom.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 91
(Where Z is more electropositive than C)
iii. Carbanions are unstable and highly reactive species formed as intermediates in many organic reactions.

Question 61.
Give the types of reagents used to carry out polar organic reactions.
Answer:
The polar organic reactions are brought about by two types of reagents.
Depending upon the ability to accept or donate electrons from or to the substrate, reagents are classified as

  1. Electrophiles (E+)
  2. Nucleophiles (Nu:)

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 62.
Explain the term electrophile. Give examples.
Answer:
Electrophiles:
i. The species which accept electron pairs from the substrate during the reaction are called electrophiles.
ii. The electrophiles are electron seeking (or electron loving) species because they themselves are electron deficient.
iii. e.g. a. Positively charged/cationic electrophiles:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 92
b. Neutral species with vacant orbitals or incomplete octet of electrons in the outermost orbit: AlCl3, BF3, FeCl3, SO2, BeCl2, ZnCl2, PCl5, etc.
iv. A polyatomic electrophile has an electron deficient atom in it called the electrophilic centre.
e.g. The electrophilic centre of the electrophile AlCl3 is AlCl3 which has only 6 valence electrons.

Question 63.
Explain the term nucleophile. Give examples.
Answer:
Nucleophiles:
i. The species which donate (give away) electron pairs to the substrate during the reaction are called nucleophiles.
ii. Since, nucleophiles are electron rich species, they donate a pair of electrons to acceptor atoms and thus, they are nucleus seeking (or nucleus loving) species.
iii. e.g. a. Negatively charged nucleophiles: OH, CN, Cl, Br, etc.
b. Neutral species containing at least one lone pair of electrons:
H2O, NH3, H2S, R – OH, R – NH2, R – OR, etc.
iv. A polyatomic nucleophile has an electron rich atom in it called the nucleophilic centre.
e.g. The nucleophilic centre of the nucleophile H2O is ‘O’ which has two lone pairs of electrons.

Question 64.
Identify the nucleophile and electrophile from NH3 and \(\stackrel{+}{\mathrm{C}} \mathrm{H}_{3}\). Also indicate the nucleophilic and electrophilic centres in them. Justify.
Answer:
The structural formulae of two reagents showing all the valence electrons are:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 93
Thus, NH3 contains N with a lone pair of electrons which can be given away to another species. Therefore, NH3 is a nucleophile and ‘N’ in it is the nucleophilic centre.
The \(\stackrel{+}{\mathrm{C}} \mathrm{H}_{3}\) is a positively charged electron deficient species having a vacant orbital on the carbon. It is an electrophile and the ‘C’ in it is the electrophilic centre.

Question 65.
What is the difference between nucleophilic reaction and electrophilic reaction. Give one example.
Answer:
In nucleophilic reaction nucleophile attacks the electrophilic centre in the substrate and brings about a nucleophilic reaction whereas, in electrophilic reaction an electrophile attacks a nucleophilic centre in the substrate and brings about an electrophilic reaction.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 94
Here, the nucleophilic centre N: in the nucleophile NH3 attacks the electrophilic centre ‘B’ in the electrophile BF3 to form the product.
[Note: Given reaction is not an organic reaction.]

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 66.
How electrophilic or nucleophilic centre is generated in a neutral substrate?
Answer:

  • The displacement of valence electrons resulting in polarization of an organic molecule is called electronic effect.
  • Polarization can be either due to the presence of an atom or substituent group, or due to the influence of certain atornattacking reagent or due to the certain structural feature present in the molecule.
  • Such polarization results in the formation of electrophilic or nucleophilic centre in the neutral organic molecule.

Question 67.
Explain the difference between permanent electronic effect and temporary electronic effect.
Answer:
i. Permanent electronic effect:
The electronic effect that occurs in a substrate in the ground state is a permanent effect.
e.g. Inductive effect and resonance effect are two examples of permanent electronic effect.

ii. Temporary electronic effect:
The electronic effect that occurs in a substrate due to approach of the attacking reagent is a temporary effect. This type of electronic effect is called as electromeric effect or polarizability effect.

Question 68.
Define: Inductive effect
Answer:
Inductive effect: When an organic molecule has a polar covalent bond in its structure, polarity is induced in adjacent carbon-carbon single bonds too. This effect is called as inductive effect.

Question 69.
Describe inductive effect in detail.
Answer:
Inductive effect:
i. When an organic molecule has a polar covalent bond in its structure, polarity is induced in adjacent carbon- carbon single bonds too. This effect is called as inductive effect.

ii. For example, in chloroethane molecule, the covalent bond between ‘C’ and ‘Cl’ is a polar covalent bond whereas C-2 and C-1 bond (C-C bond) is expected to be nonpolar covalent bond. But, this bond acquires some polarity as chlorine is more electronegative than carbon. Chlorine pulls the bonding pair of electrons towards itself. Thus, the chlorine atom acquires a fractional negative charge, while the C-1 carbon atom acquires a fractional positive charge. As C-1 is further bonded to C-2, the positive polarity of C-1 pulls the shared pair of electrons of the C-2 – C-l bond more towards itself. As a result, a smaller positive charge is developed on C-2. Thus, the electron density gets displaced towards the chlorine atom not only along the [C-1 – Cl] bond, but also along the [C-2 – C-1] bond due to the inductive effect of Cl. This is represented as follows:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 95

iii. The arrow head shown in the centre of the bond represents inductive effect. The direction of the arrow head indicates the direction of the permanent electron displacement along the sigma bond in the ground state.
iv. The inductive effect of an influencing group is transmitted along a chain of C-C bonds. However, this effect decreases rapidly with the increase in the number of intervening C-C single bonds and it becomes negligible beyond three C-C bonds.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 96

v. The direction of the inductive effect of a bonded group depends upon whether electron density of the bond is withdrawn from the bonded carbon or donated by the bonded carbon. On the basis of this ability, the groups/substituents are classified as either electron withdrawing (accepting) or electron donating (releasing) groups with respect to hydrogen.
e.g. In chloroethane, Cl withdraws electron density from the carbon chain and is electron withdrawing. Therefore, chlorine is said to exert an electron withdrawing inductive effect or negative inductive effect (-I effect) on the carbon chain.

vi. a. Substituents or groups that shows -I effect: -Cl, -NO2, -CN, -COOH, -COOR, -OAr, etc.
b. Substituents or groups that shows +I effect: Alkyl groups such as -CH3, -CH2CH3, etc.

Question 70.
Consider the following molecules and answer the questions:
CH3 – CH2 – CH2 – Cl, CH3 – CH2 – CH2 – Br, CH3 – CH2 – CH2 – I.
i. What type of inductive effect is expected to operate in these molecules?
ii. Identify the molecules from these three, having the strongest and the weakest inductive effect.
Answer:
i. The groups responsible for inductive effect in these molecules are -Cl, -Br and -I, respectively. All these are halogen atoms which are more electronegative than carbon. Therefore, all of them exert -I effect, that is, electron withdrawing inductive effect.
ii. The -I effect of halogens is due to their electronegativity. A decreasing order of electronegativity in these halogens follows Cl > Br > I. Therefore, the strongest -I effect is expected in CH3 – CH2 – CH2 – Cl, while the weakest -I effect is expected for CH3 – CH2 – CH2 – I.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 71.
Which of the CH3 – CHCl2 and CH3CH2Cl is expected to have stronger -I effect?
Answer:
The group exerting -I effect is -Cl. In CH3CH2Cl, there is only one -Cl atom while in CH3 – CHCl2 there are two -Cl atoms. Therefore, CH3 – CHCl2 is expected to have strong -I effect.

Question 72.
Give an account of expected and observed values of carbon-carbon bond lengths in benzene.
Answer:

  • In cyclic structure of benzene, three alternating C – C single bonds and C=C double bonds are present.
  • Expected values of bond length of the C – C bond and C = C are 154 pm and 133 pm respectively.
  • Experimental measurements show that benzene has a regular hexagonal shape and all the six carbon-carbon bonds have the same bond length of 138 pm, which is intermediate between C – C single bond and C=C double bond.
  • This means that all the six carbon-carbon bonds in benzene are equivalent.

Note: Structure of benzene
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 97

Question 73.
What do you understand by the term conjugated system of π bonds?
Answer:
When Lewis structure of a compound has two or more multiple bonds alternating with single bonds, it is called a conjugated system of π bonds.
e.g. Benzene molecule
[Note: In such a system or in species having an atom carrying p orbital attached to a multiple bond, resonance theory is applicable.]

Question 74.
Identify the species that contains a conjugated system of π bonds. Explain your answer,
i. CH2 = CH – CH2 – CH = CH2
ii. CH2 = CH – CH = CH – CH3
Answer:
i. It does not contain conjugated system of π bonds, as the two C = C double bonds are separated by two C – C single bonds.
ii. It contains a conjugated system of π bonds, as the two C = C double bonds are separated by only one C – C single bond.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 75.
Explain in detail the important points of resonance theory.
Answer:
Resonance theory:
i. The π electrons in conjugated system of π bonds are not localized to a particular π bond.
ii. For a compound having a conjugated system of π bonds (or similar other systems), two or more Lewis structures are written by showing movement of π electrons (that is, delocalization of π electrons) using curved arrows.
The Lewis structures so generated are linked by double headed arrow and are called resonance structures or contributing structures or cononical structures of the species. Thus, two resonance structures can be drawn for benzene by delocalizing or shifting the π electrons :
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 98
iii. The positions of the carbon atoms in the conjugated system of π bonds remain unchanged, but the positions of π electrons are different in different resonance structures.
e.g. In the resonance structure I of benzene there is a single bond between C1 and C2 while in the resonance structure II there is a double bond between C1 and C2.

iv. Any resonance structure is hypothetical and does not by itself represent any real molecule and can explain all the properties of the compound. The real molecule has, however, character of all the resonance structures those can be written. The real or actual molecule is said to be the resonance hybrid of all the resonance structures.
e.g. An actual benezene molecule is the resonance hybrid of structures I and II and exhibit character of both these structures. Its approximate representation can be shown as a dotted.circle inscribed in a regular hexagon. Thus, each carbon-carbon bond in benzene has single as well as double bond character and the ring has a regular hexagonal shape.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 99
v. Hypothetical energy of an individual resonance structure can be calculated using bond energy values. The energy of actual molecule is, however, lower than that of any one of the resonance structures. In other words, resonance hybrid is more stable than any of the resonance structures. The difference in the actual energy and the lowest calculated energy of a resonance structure is called resonance stabilization energy or just resonance energy. Thus, resonance leads to stabilization of the actual molecule.

Question 76.
State the rules to be followed for writing resonating structures.
Answer:
Rules to be followed for writing resonating structures:

  1. Resonance structures can be written only when all the atoms involved in the n conjugated system lie in the same place.
  2. All the resonance structures must have the same number of unpaired electrons.
  3. Resonance structures contribute to the resonance hybrid in accordance to their energy or stability. More stable (having low energy) resonance structures contribute largely and thus are important.

Question 77.
What are the important points considered while selecting the most stable resonance structure if there are several contributing/resonance structures for a compound?
Answer:
When several resonance structures are compared, then the resonance structure is considered to be more stable if it has:

  • more number of covalent bonds,
  • more number of atoms with complete octet or duplet,
  • less separation, if any, of opposite charges,
  • negative charge, if any, on more electronegative atom and positive charge, if any, on more electropositive atom and
  • more dispersal of charge.

[Note: When all the resonance structures of a species are equivalent to each other, the species is highly resonance stabilized. For example, R – COO-, \(\mathrm{CO}_{3}^{2-}\)]

Question 78.
Write resonance structures of H – COO and comment on their relative stability.
Answer:
i. First the detailed bond structure of H – COO showing all the valence electron is drawn and then other resonance structures are generated using curved arrow to show movement of π-electrons.
ii. Two resonance structures are written for H – COO.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 100
Both the resonance structures I and II are equivalent to each other, and therefore, are equally stable.

Question 79.
Identify the species which has resonance stabilization. Justify your answer.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 101
Answer:
i. The bond structure shows that there is no π bond. Therefore, no resonance and no resonance stabilization.
ii.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 102
N = O double b5itd is attached to ‘O’ which carries lone pair of electrons in a p orbital.
Therefore, resonance structures can be written as shown and species is resonance stabilized.
iii.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 103
The Lewis structure shows two C = C double bonds alternating with a C – C single bond.
Therefore, resonance structures can be written as shown and the species is resonance stabilized.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 80.
Write three resonance structures for CH3 – CH = CH – CHO. Indicate their relative stabilities and explain.
Answer:
Three resonance structures are:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 104
Stability order: I > II > III
I: Contains more number of covalent bonds, each carbon atom and oxygen atom has complete octet, and involves no separation of opposite charges. Therefore, the most stable resonance structure.

II: Contains one covalent bond less than in I, one carbon (C+) has only 6 valence electrons, involves separation of opposite charges; the resonance structure II has -ve charge on more electronegative ‘O’ and +ve charge on more electropositive ‘C’. It has intermediate stability.

III: Contains one covalent bond less than in I, oxygen has only 6 valence electrons, involves separation of opposite charge, has -ve charge on the more electropositive ‘C’ and +ve charge on more electronegative ‘O’. All these factors are unfavourable for stability. Therefore, it is the least stable.

Question 81.
Define: Resonance effect.
Answer:
The polarity produced in the molecule by the interaction between conjugated n bonds (or that between n bond and p orbital on attached atom) is called the resonance effect or mesomeric effect.

Question 82.
Explain in short:
i. Positive resonance (+R) effect
ii. Negative resonance (-R) effect
Answer:
i. Positive resonance (+R) effect or electron donating/releasing resonance effect:
a. If the substituent group has a lone pair of electrons to donate to the attached K bond or conjugated system of π bonds, the effect is called +R effect.
b. The +R effect increases electron density at certain positions in a molecule.
e.g. +R effect in aniline increases the electron density at ortho and para positions.
c. Halogen, -OH, -OR, -O, -NH2, -NHR, -NR2, – NHCOR, -OCOR, etc. are the groups which show +R effect.

ii. Negative resonance (-R) effect:
a. If the substituent group has a tendency to withdraw electrons from the attached π bond or conjugated system of π bonds towards itself the effect is called -R effect.
b. The -R effect results in developing a positive polarity at certain positions in a molecule.
e.g. -R effect in nitrobenzene develops positive polarity at ortho and para positions.
c. -COOH, -CHO, – CO -, -CN, -NO2, -COOR, etc., are the groups which represent -R effect.

Question 83.
Draw resonance structures showing +R effect in aniline.
Answer:
The following resonance structures can be drawn for aniline:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 105

Question 84.
Draw resonance structures showing -R effect in nitrobenzene.
Answer:
The following resonance structures can be drawn for nitrobenzene:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 106

Question 85.
Write a note on electromeric effect.
Answer:
Electromeric effect:
i. This is a temporary electronic effect exhibited by multiple-bonded groups in the excited state in the presence of a reagent.
ii. When a reagent approaches a multiple bond, the electron pair gets completely shifted to one of the multiply, bonded atoms, giving a charge separated structure.
iii.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 107
This effect is temporary and disappears when the reagent is removed from the reacting system.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 86.
Explain the term hyperconjugation in short.
Answer:
Hyperconjugation:
i. Hyperconjugation is a permanent electronic effect.
ii. It explains the stability of a carbocation, free radical or alkenes.
iii. It involves delocalization of sigma electrons of a C – H bond of an alkyl group directly attached to a carbon atom, which is part of an unsaturated system or has an empty p orbital or a p orbital with an unpaired electron.
iv. Following species are stabilized by resonance:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 108

Question 87.
Explain hyperconjugation in ethyl carbocation.
Answer:
i. In ethyl cation \(\mathrm{CH}_{3} \stackrel{+}{\mathrm{CH}}_{2}\), positively charged carbon atom is attached to a methyl group.
ii. The positively charged carbon atom has six electrons; it is sp2 hybridized and has an empty p orbital available for hyperconjugation.
iii. One of the C – H bonds of the methyl group can align in plane of the empty p orbital. The sigma electrons constituting the C – H bond can be delocalized into this empty p orbital.
iv. Therefore, hyperconjugation arises due to the partial overlap of a C-H bond with the empty p orbital of an adjacent positively charged carbon atom. Thus, hyperconjugation is a σ-π conjugation.
v. Hyperconjugation structures in ethyl carbocation can be represented as:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 109
vi. In the contributing structures, there is no covalent bond shown between the carbon and one of the α-hydrogens. Hence, hyperconjugation is also called as ‘no bond resonance’.
vii. This type of overlap stabilizes the cation, because the electron density from the adjacent a bond helps in dispersing the positive charge.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 110

Question 88.
Explain the stability of tert-butyl cation, isopropyl cation, ethyl cation and methyl cation on the basis of hyperconjugation.
Answer:
i. Greater the number of alkyl groups attached to a positively charged carbon atom, more is the number of α-hydrogens, more is the hyperconjugation structures and more is the stability of the cation.

ii. Thus, the relative stability of the cations decreases in the order:
3° carbocation > 2° carbocation > 1° carbocation > Methyl cation
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 111

Question 89.
Explain hyperconjugation in propene.
Answer:
i. In propene, CH3 – CH = CH2, one of the sp2 hybridized carbon atom of the double bond is attached to sp3 hybridized carbon atom of methyl group.
ii. One of the C-H bonds of the methyl group can align in plane of the p orbital of sp2 hybridized C-atom and the electrons constituting the C-H bond in plane with this p orbital can then be delocalized into the p orbital.
iii. Therefore, hyperconjugation arises due to the partial overlap of a C-H bond with the p orbital of an adjacent sp2 hybridized carbon atom.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 112
iv. Hyperconjugation (no bond resonance) structures for propene can be represented as:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 113

Question 90.
Write the Lewis dot structures of but-1-ene and but-2-ene? Also, write the bond line formula of both the compounds.
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 114

Question 91.
Due to contamination by viruses, the hospital authorities had asked Ranjan, the ward boy, to keep cleaning the hospital lobby using some antiseptic. Ranjan would wipe the floor by adding Dettol to water and would always keep the premises clean. One of the active ingredients in Dettol is chloroxylenol (4-chloro-3,5-dimethylphenol). Ranjan was also actively associated with an NGO, which was involved in Swachh Bharat campaign. Based on this passage, answer the following questions.
i. Which functional groups are present in chloroxylenol?
ii. Write the bond line and molecular formula of chloroxylenol.
iii. Identify one group each in chloroxylenol which show +I and -I effect, respectively.
Answer:
i. chloroxylenol is
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 115
Functional groups present in chloroxylenol are chloro (-Cl) and phenolic -OH group.

ii. The bond line formula of chloroxylenol can be shown as,
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 116
Its molecular formula is C8H9OCl or C8H8ClOH

iii. Group which shows +I effect = -CH3; group which shows -I effect = -Cl

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Multiple Choice Questions

1. Which of the following method can be used to represent 3-D structure of organic molecules?
i. Wedge formula
ii. Fischer projection formula
iii. Newman projection formula
iv. Sawhorse formula
(A) Only ii and iii.
(B) Only i and iii.
(C) Only iii and iv.
(D) All of the above
Answer:
(D) All of the above

2. Which one is the INCORRECT statement?
(A) Open chain compounds are called aliphatic compounds.
(B) Unsaturated compounds contain multiple bonds in them.
(C) Saturated hydrocarbons are called alkenes.
(D) Aromatic compounds possess a characteristic aroma.
Answer:
(C) Saturated hydrocarbons are called alkenes.

3. Choose the INCORRECT statement from the following.
(A) Cyclohexane is an alicyclic compound.
(B) Pyridine is a heterocyclic compound.
(C) Piperidine is an aromatic compound.
(D) Tropone is a non-benzenoid compound.
Answer:
(C) Piperidine is an aromatic compound.

4. Which of the following is NOT a cyclic compound?
(A) Anthracene
(B) Pyrrole
(C) Phenol
(D) Neopentane
Answer:
(D) Neopentane

5. Which of the following is a cycloalkane?
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 117
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 118

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

6. Which one of the following could be a cyclic alkane?
(A) C5H5
(B) C3H6
(C) C4H6
(D) C2H6
Answer:
(B) C3H6

7. Which of the following is a heterocyclic compound?
(A) Naphthalene
(B) Thiophene
(C) Phenol
(D) Aniline
Answer:
(B) Thiophene

8. Which of the following is NOT aromatic?
(A) Benzene
(B) Toluene
(C) Cyclopentane
(D) Phenol
Answer:
(C) Cyclopentane

9. Cyclohexene is …………….
(A) aromatic
(B) alicyclic
(C) benzenoid
(D) aliphatic
Answer:
(B) alicyclic

10. An organic compound ‘X’ (molecular formula C6H7O2N) has six carbons in a ring system, two double bonds and also a nitro group as a substituent, ‘X’ is …………..
(A) homocyclic and aromatic
(B) homocyclic but not aromatic
(C) heterocyclic
(D) aromatic but not homocyclic
Answer:
(B) homocyclic but not aromatic

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

11. Which of the following structure represents an aldehyde?
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 119
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 120

12. A member of a homologous series differs from immediate above or below member by …………… group.
(A) – CH3
(B) – CH2
(C) – CH2CH3
(D) – C6H5
Answer:
(B) – CH2

13. Which of the following is NOT a branched chain alkyl group?
(A) Isobutyl group
(B) n-Butyl group
(C) sec-Butyl group
(D) tert-Butyl group
Answer:
(B) n-Butyl group

14. In IUPAC nomenclature, the number which indicates the position of the substituent is called ………….
(A) locant
(B) delocant
(C) prefix
(D) suffix
Answer:
(A) locant

15. The IUPAC name of the following compound is …………..
(A) 1,1 -dimethyl-2-ethylcyclohexane
(B) 2-ethyl-1,1 -dimethylcyclohexane
(C) 1 -ethyl-2,2-dimethylcyclohexane
(D) 2,2-dimethyl-1-ethylcyclohexane
Answer:
(B) 2-ethyl-1,1 -dimethylcyclohexane

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

16. Which is the CORRECT name of ………….
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 121
(A) Propyl ethanoate
(B) Ethyl propanoate
(C) Methyl butanoate
(D) Butyl methanoate
Answer:
(C) Methyl butanoate

17. Homolytic fission is NOT favourable in presence of …………..
(A) UV light
(B) catalyst like peroxide
(C) polar solvent
(D) high temperature
Answer:
(C) polar solvent

18. The total number of electrons in the carbon atom of methyl free radical is ………….
(A) six
(B) seven
(C) eight
(D) nine
Answer:
(B) seven

19. The most unstable carbocation amongst the following is ……………
(A) (CH3)3C+
(B) (CH3)2CH+
(C) CH3 – CH2+
(D) CH3+
Answer:
(D) CH3+

20. Which of the following represents a pair of electrophiles?
(A) BF3, H2O
(B) AlCl3, NH3
(C) CN, ROH
(D) BF3, AlCl3
Answer:
(D) BF3, AlCl3

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

21. This group shows +I effect.
(A) -Br
(B) -CN
(C) -COOH
(D) -CH2CH3
Answer:
(D) -CH2CH3

22. Which of the following group shows negative resonance effect?
(A) -O-
(B) -COOH
(C) -NHCOR
(D) -NH2
Answer:
(B) -COOH

23. Resonance is NOT exhibited by ………….
(A) phenol
(B) aniline
(C) nitrobenzene
(D) cyclohexane
Answer:
(D) cyclohexane

24. All bonds in benzene are equal due to ………….
(A) tautomerism
(B) metamerism
(C) resonance
(D) isomerism
Answer:
(C) resonance

Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

Balbharti Maharashtra State Board 11th Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity Important Questions and Answers.

Maharashtra State Board 11th Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

Question 1.
Explain the term nuclear chemistry. Give a few examples of nuclear reactions.
Answer:
Nuclear chemistry is a branch of physical chemistry and it deals with the study of reactions involving changes in atomic nuclei. This branch started with the discovery of natural radioactivity by physicist Antoine Henri Becquerel.

Examples of nuclear reactions are as follows:

  • Radioactive decay
  • Artificial transmutation
  • Nuclear fission
  • Nuclear fusion

Question 2.
Write a short note on similarity between the solar system and structure of atom.
Answer:
Solar system: It consists of the Sun and planets in which Sun is at the centre of solar system and planets move around it under the force of gravity.

Atomic system: It consists of tiny central core called as nucleus at the centre of atom around which electrons are present. Like in solar system, electrostatic attractions hold subatomic particles in a structure of atom. The nucleus consists of protons and neutrons.

Question 3.
Answer the following.
i. Give the symbolic representation for calcium, (no. of protons = 20, mass number = 40)
ii. Calculate the number of neutrons for calcium.
Answer:
i. \({ }_{20}^{40} \mathrm{Ca}\), in which Z = 20 and A = 40.
ii. Number of neutrons: It can be calculated from formula (A = Z + N).
For calcium, N = A – Z = 40 – 20 = 20
Nucleus of the calcium atom contains 20 neutrons.

Question 4.
Explain the term nucleons with examples.
Answer:
The term nucleon refers to the sum of protons (p) and neutrons (n) present in atom, e.g. Number of nucleons present in \({ }_{20}^{40} \mathrm{Ca}\) are 40 (i.e., 20 protons and 20 neutrons). Number of nucleons present in \({ }_{11}^{23} \mathrm{Na}\) are 23 (i.e., 11 protons and 12 neutrons).

Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

Question 5.
Define: Nuclide
Answer:
The nucleus of a specific isotope is called as nuclide.

Question 6.
Atom as a whole is electrically neutral. Justify.
Answer:

  • The magnitude of electronic charge (e) on the nucleus is +Ze and that of outer sphere is -Ze. Number of protons and number of electrons are always equal in an atom.
  • As a result of this, the charges get nullified, therefore, the atom as a whole is electrically neutral.

Question 7.
Define:
i. Isotopes
ii. Isobars
Answer:
i. Isotopes: Nuclides which contain same number of protons but different number of neutrons in their nuclei are called as isotopes. e.g. \({ }_{11}^{22} \mathrm{Na}\), \({ }_{11}^{23} \mathrm{Na}\) and \({ }_{11}^{24} \mathrm{Na}\)
ii. Isobars: Nuclides (of different element) which have same mass number but have different number of protons and neutrons in their nuclei are called as isobars.
OR
The atoms of different elements having the same mass number but different atomic numbers are called isobars.
e.g. \({ }_{6}^{14} \mathrm{C}\) and \({ }_{7}^{14} \mathrm{N}\)

Question 8.
Define mirror nuclei and isotones.
Answer:

  • Isobars in which the number of protons and neutrons differ by 1 unit and are interchanged are called as mirror nuclei.
  • Isotones are defined as nuclides having the same number of neutrons but different number of protons and hence, different mass numbers.

Question 9.
Name the following.
i. Nuclides in which number of protons and neutrons differ by 1 and are interchanged.
ii. Nuclides having the same number of neutrons but different number of protons.
iii. Nuclides with the same mass number which differ in energy states.
Answer:
i. Mirror nuclei
ii. Isotones
iii. Nuclear isomers

Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

Question 10.
Explain the term nuclear isomers?
Answer:

  • The nuclides with the same number of protons (Z) and neutrons (N) or the same mass number (A) which differ in energy states are called nuclear isomers.
  • In this, the isomer of higher energy is said to be in the metastable state which is represented by writing “m” after the mass number.
    e.g. Nuclear isomers of cobalt can be represented as, 60mCo and 60Co.

Question 11.
State true or false. Correct the false statement.
i. The number of nucleons in C-12 atom is 6.
ii. N-13 and C-13 are mirror nuclei.
iii. Nuclear isomers have same number of protons and neutrons.
Answer:
i. False,
The number of nucleons in C-12 atom is 12.
ii. True
iii. True

Question 12.
Give classification of nuclides on the basis of nuclear stability.
Answer:
Nuclides can be classified into stable and unstable/radioactive nuclides on the basis of nuclear stability.

  • Stable nuclides: In this type of nuclides, the number of electrons and the location of nuclei may change in outer sphere but the number of protons and neutrons remain unchanged.
  • Radioactive (unstable) nuclides: These nuclides undergo spontaneous change forming new nuclides.

Question 13.

Number of protons (Z)Number of neutrons (N)Number of such nuclides
i.EvenEven165
ii.EvenOdd55

What conclusion can be drawn from the above given data?
Answer:

  • Number of nuclides with even ‘Z’ and even ‘N’ are higher in number as compared to nuclides with even ‘Z’ and odd ‘N’
  • Nuclides with even number of ‘Z’ and odd number of ‘N’ are about 1/3rd of nuclides where both ‘Z’ and ‘N’ are even.
  • Nuclides with even number of protons (Z) and even number of neutrons (N) are most stable. These nuclides tend to fonn proton-proton and neutron-neutron pairs. This impart stability to the nucleus.

Question 14.
Write a note on naturally occurring nuclides with either odd number of protons or odd number of neutrons.
Answer:
i. The number of stable nuclides with either Z or N odd is about one third of nuclides where both are even.
ii. These nuclides are less stable than those having even number of protons and neutrons.
iii. In these nuclides one nucleon has no partner and therefore, these nuclides are less stable.
iv. Further the number of nuclides with odd A are nearly the same, irrespective of Z or N is odd. This indicates that protons and neutrons behave similarly in the respect of stability.
v. Following table gives the estimate of such nuclides occurring in nature.

Number of protons (Z)Number of neutrons (N)Number of such nuclides
i.EvenOdd55
ii.OddEven50

Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

Question 15.
State true or false. Correct the false statements.
i. The nuclides with even Z and even N constitute 85% of earth crust.
ii. Nuclides with either ‘Z’ or ‘N’ odd are more stable than those having even number of both ‘Z’ and ‘N’
iii. The number of nuclides with odd number of ‘Z’ and odd number of ‘N’ are only four.
Answer:
i. True
ii. False
Nuclides with either ‘Z’ or ‘N’ odd are less stable than nuclides having even number of both ‘Z’ and ‘N’.
iii. True

Question 16.
Heavier nuclides require greater number of neutrons (than protons) to attain stability. Justify.
Answer:

  • The heavier nuclides with the increasing number of protons lead to large coulombic repulsions.
  • Increased number of neutrons will separate the protons within the nuclei, which will impart stability. Thus, in order to attain stability heavier nuclide need more number of neutrons.

Question 17.
Consider the graph of neutron (N) plotted against proton number (Z). How will you identify radioactive nuclides from the graph?
Answer:
Nuclides which fall outside the belt or stability zone are radioactive nuclides.

Question 18.
Write a note Magic numbers.
Answer:
Magic numbers: The nuclei with 2, 8, 20, 28, 50, 82 and 126 neutrons or protons are particularly stable and abundant in nature. These numbers are known as magic numbers.
e.g. Lead (\({ }_{82}^{208} \mathrm{~Pb}\)) has two magic numbers, 82 protons and 126 neutrons.

Question 19.
What is the order of distance between two protons present in the nucleus?
Answer:
The order of distance between two protons present in the nucleus is typically of order of 10-15 m.

Question 20.
Which factor is responsible for nuclear stability?
Answer:
Nuclear forces of attractions exist within nuclei. These are attractions between proton-proton (p-p), neutron-neutron(n-n) and proton-neutron(p-n). They constitute or give rise to nuclear potential which is responsible for nuclear stability.

Question 21.
Write short notes on: nuclear potential.
Answer:

  • Nuclear potential is the attraction between p-p, n-n and p-n.
  • These attractive forces are independent of the charge on nucleons or attraction between p-p, n-n and p-n are equal.
  • These attractive forces operate over short range within the nucleus.
  • Nuclear potential is responsible for the nuclear stability.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

Question 22.
State true or false. Correct the false statement.
i. The nuclear forces of attractions are dependent on the charge on the nucleons.
ii. The actual mass of an atom is observed to be more than sum of the masses of its constituents.
Answer:
i. False
The nuclear forces of attractions are independent of the charge on the nucleons.
ii. False
The actual mass of an atom is observed to be less than sum of the masses of its constituents.

Question 23.
Define: Nuclear binding energy
Answer:
An energy equivalent to the mass lost is released during the formation of nucleus. This is called the nuclear binding energy.
OR
The energy requiredfor holding the nucleons together within the nucleus of an atom is called as the nuclear binding energy.

Question 24.
Explain the term: mass defect.
Answer:
During the formation of nucleus, certain mass is lost. This phenomenon is known as mass defect (Δm).
The exact mass of nucleus is slightly less than sum of the exact masses of the constituent nucleons. This difference is called as mass defect. It is represented by symbol Δm.
Formulae: Δm = calculated mass – observed mass

Question 25.
Explain the relation between nuclear mass and energy? Also give the energy released in the conversion of one atomic mass unit into energy.
Answer:
i. The nuclear mass is expressed in atomic mass unit (u) which is exactly 1/12th of the mass of 12C atom. Thus, u = 1/12th mass of C-12 atom = 1.66 × 10-2 kg.
ii. The conversion of mass into energy is established through Einstein’s equation, E = mc2.
Where m is the mass of matter converted into energy (E) and velocity of light (c).
iii. The energy released in the conversion of one u mass into energy is given by:
E = mc2 = (1.66 × 10-27kg) × (3 × 108 m s-1)2

Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

Question 26.
Derive the expression for nuclear binding energy for a nuclide.
Answer:
Expression for nuclear binding energy:
i. Consider a nuclide \({ }_{z}^{A} X\) that contains Z protons and (A – Z) neutrons. Suppose the mass of the nuclide is m. The mass of proton is mp and that of neutron is mn.

ii. Total mass = (A – Z)mn + Zmp + Zme …..(1)
Δm = [(A – Z)mn + Zmp + Zme] – m
= [(A – Z)mn + Z(mp + me] – m
= [(A – Z)mn + ZmH] – m …..(2)
Where (mp + me) = mH = mass of H atom.
Thus, (Δm) = [Zmp + (A – Z)mn] – m
Where Z = atomic number
A = mass number
(A – Z) = neutron number
mp and mn = masses of proton and neutron, respectively
m = mass of nuclide

iii. The mass defect, Δm is related to binding energy of nucleus by Einstein’s equation,
ΔE = Δm × c2
Where, ΔE = Binding energy, Δm = mass defect.
iv. Nuclear energy is measured in million electro volt (MeV).
v. The total binding energy is then given by,
B.E. = Δm (u) × 931.4
Where 1.00 u = 931.4 MeV
B.E. = 931.4 [ZmH + (A – Z)mn – m] ……(3)
Total binding energy of nucleus containing A nucleons is the B.E.
vi. The binding energy per nucleon is then given by,
\(\bar{B}\) = B.E./A

Question 27.
Calculate the mean binding energy per nucleon for the formation of \({ }_{8}^{16} \mathrm{O}\) nucleus. The mass of oxygen atom is 15.994 u. The masses of H atom and neutron are 1.0078 u and 1.0087 u, respectively.
Solution:
Given: mH = 1.0078 u
mn= 1.0087 u
m= 15.994 u
Z = 8, A= 16
To find: Mean binding energy per nucleon (\(\bar{B}\))
Formulae: i. Δm = ZmH + (A – Z)mn – m
ii. B.E. = Δm × 931.4 MeV
iii. \(\overline{\mathrm{B}}=\frac{\mathrm{B} . \mathrm{E} .}{\mathrm{A}}\)
Calculation: i. The mass defect, Δm = ZmH + (A – Z)mn – m
Δm = 8 × 1.0078 u + 8 × 1.0087 u – 15.994 u = 0.138 u
ii. Total binding energy, B.E. (MeV) = Δm (amu) × 931.4
Hence, B.E. = 0.138 × 931.4 = 128.533 MeV
iii. Binding energy per nucleon, \(\overline{\mathrm{B}}=\frac{\mathrm{B} . \mathrm{E} .}{\mathrm{A}}\)
Hence, \(\bar{B}\) = \(\frac{128.533}{16}\) = 8.033 MeV/nucleon
Ans: Binding energy per nucleon for the formation of \({ }_{8}^{16} \mathrm{O}\) nucleus = 8.033 MeV/nucleon

Question 28.
Calculate the binding energy per nucleon for the formation of \({ }_{2}^{4} \mathrm{He}\) nucleus. Mass of \({ }_{2}^{4} \mathrm{He}\) atom = 4.0026 u.
Solution:
Given: m = 4.0026 u
Z = 2, A = 4
To find: Binding energy per nucleon (\(\bar{B}\))
Formulae: i. Δm = ZmH + (A – Z)mn – m
ii. B.E. = Δm × 931.4 MeV
iii. \(\overline{\mathrm{B}}=\frac{\mathrm{B} . \mathrm{E} .}{\mathrm{A}}\)
The mass defect, Δm = [ZmH + (A – Z)mn] – m
Δm = [(2 × 1.0078) + (2 × 1.0087)] – 4.0026 = 0.0304 u
Total binding energy, B.E. (MeV) = Δm (amu) × 931.4
= 0.0304 × 931.4
= 28.315 MeV
iii. B.E. per nucleon, \(\overline{\mathrm{B}}=\frac{\mathrm{B} . \mathrm{E} .}{\mathrm{A}}\)
\(\bar{B}\) = \(\frac{28.315}{4}\) = 7.079 Mey/nucleon
Ans: Binding energy per nucleon for formation of \({ }_{2}^{4} \mathrm{He}\) nucleus = 7.079 MeV/nucleon

Question 29.
Define radioactivity and give examples of two radioactive elements.
Answer:
Radioactivity is a phenomenon in which the nuclei spontaneously emit a nuclear particle and gamma radiation transforming to a different nuclide. e.g. Uranium and radium
[Note: Radioactivity is the phenomenon related to the nucleus.]

Question 30.
What is the criteria for an element to be known as radioactive element?
Answer:

  • An element is considered to be radioactive if the nuclei of its atoms are unstable.
  • That is, when element undergoes nuclear changes (i.e., emission of nuclear particles and gamma radiation), it is said to be radioactive.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

Question 31.
What are the different types of radiations emitted by radioactive element?
Answer:
The radiations emitted by radioactive elements are as follows:

  • Alpha (α) radiations
  • Beta (β) radiations
  • Gamma (γ) radiations

Question 32.
Write the unit of rate of decay.
Answer:
The rate of decay is expressed in the form of disintegrations per second (dps).

Question 33.
Derive the equation λ = \(\frac{\left(-\frac{\mathbf{d} \mathbf{N}}{\mathbf{d} \mathbf{t}}\right)}{\mathbf{N}}\) and write what does λ denotes.
Answer:
The rate of decay of a radioelement at any instant is proportional to the number of nuclei (atoms) present at that instant. It can be represented as,
\(-\frac{\mathrm{d} \mathrm{N}}{\mathrm{dt}} \propto \mathrm{N} \quad \text { or }-\frac{\mathrm{d} \mathrm{N}}{\mathrm{dt}}=\lambda \mathrm{N}\) …….(i)
Where, \(-\frac{\mathrm{d} \mathrm{N}}{\mathrm{dt}}\) = Rate of decay at any time, t
λ = Decay constant
N = Number of nuclei (atoms) present at time, t
From equation (i),
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 1
Decay constant (λ) is the fraction of nuclei decaying in unit time.
OR
It is the ratio of the amount of substance disintegrated per unit time to the amount of substance present at that time.

Question 34.
Derive the expression for decay constant.
Answer:
Decay constant (λ) is the fraction of nuclei decaying in unit time.
Thus,
λ = \(-\frac{d N}{d t} \times \frac{1}{N}\) …(i)
Rearranging equation (i) we get,
\(\frac{\mathrm{d} \mathrm{N}}{\mathrm{N}}\) = -λ dt
On integrating above equation, we get
∫\(\frac{\mathrm{d} \mathrm{N}}{\mathrm{N}}\) = -∫ λ dt …(ii)
On performing the integration, we get lnN = -λt + C ……(iii)
where C is the constant of integration whose value is obtained as follows:
Let N0 be the number of nuclei present at some arbitrary zero time. At time t, the number of nuclei is N. So, at t = 0, N = N0, substituting in equation (iii), we get
lnN0 = C
With this value of C, equation (iii) becomes
lnN = -λt + lnN0
or λt = lnN0 – InN = ln \(\frac{\mathrm{N}_{0}}{\mathrm{~N}}\) ……(iv)
Hence, λ = \(\frac{1}{t} \ln \frac{N_{0}}{N}\) …….(v)
Converting natural logarithm (ln) to logarithm to the base 10, equation (v) becomes
λ = \(\frac{2.303}{t} \log _{10} \frac{N_{0}}{N}\) ………(vi)
The equation (iv) can be expressed as ln \(\frac{\mathrm{N}_{0}}{\mathrm{~N}}\) = -λt. Taking antilog of both sides, we get
\(\frac{\mathrm{N}}{\mathrm{N}_{0}}=\mathrm{e}^{-\lambda \mathrm{t}} \text { or } \mathrm{N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda t}\) …….(vii)
The equation (vi) and equation (vii) give the decay constant.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

Question 35.
Write a note on half-life of a radioelement.
Answer:

  • Half-life of a radioelement (t1/2): It is the time needed for a given number of nuclei (atoms) of radioelement to decay exactly to half of its initial value.
  • Each radio isotope has its own half-life.
  • Half-life of a radioelement can be expressed in seconds, minutes, hours, days or years.
  • Mathematical expression for half-life of a radioelement can be given as,
    \(t_{1 / 2}=\frac{0.693}{\lambda}\)

Question 36.
Complete the following statements based on the given graph.
i. As decay progresses, the number of radioactive atoms will ……….. with time.
ii. As decay progresses, the rate of decay will …………..
iii. Rate of radioactive decay at any instant is ………… to the number of atoms of the radioactive element present at that instant.
Answer:
i. decrease
ii. decrease
iii. proportional

Question 37.
218Po decays initially at a rate of 816 dps. The rate falls to 408 dps after 24 min. Calculate the decay constant.
Solution:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 2
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 3

Question 38.
After how many seconds will the concentration of radioactive element X will be halved, if the decay constant is 1.155 × 10-3 s-1?
Solution:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 4
Ans: Concentration of radioactive element (X) will be halved in 600 s.

Question 39.
41Ar decays initially at a rate of 575 Bq. The rate falls to 358 dps after 75 minutes. What is the half-life of 41Ar?
Solution:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 5
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 6
Ans: The half-life of Ar is 109.7 min.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

Question 40.
The half-life of 32P is 14.26 d. What percentage of 32P sample will remain after 40 d?
Solution:
Given: t1/2 = 14.26 d,
N0 = 100,
t = 40 d
To find: Percentage of 32P sample remaining after 40 d
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 7
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 8

Question 41.
The half-life of 34Cl is 1.53 s. How long does it take for 99.9 % of sample of 34Cl to decay?
Solution:
Given: t1/2 = = 1.53 s,
N0 = 100,
N = 100 – 99.9 = 0.1,
To find: Time (t)
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 9

Question 42.
The half-life of 209Po is 102 y. How much of 1 mg sample of polonium decays in 62 y?
Solution:
Given: t1/2 = 102y,
t = 62 y,
N0 = 1 mg
To find: Amount of polonium that decayed in 62 y
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 10
Taking antilog of both sides we get,
\(\frac{\mathrm{N}_{0}}{\mathrm{~N}}\) = antilog (0.1829) = 1.524
N = \(\frac{\mathrm{N}_{0}}{1.524}=\frac{1 \mathrm{mg}}{1.524}\) = 0.656 mg
N is the amount that remains after 62 y.
Hence, the amount decayed in 62 y = 1 mg – 0.656 mg = 0.344 mg
Ans: The amount decayed in 62 y is 0.344 mg

Question 43.
What will be the approximate time taken for 90 % decay of 174Ir in terms of its half-life?
Solution:
Given: N0 = 100
N = 100 – 90 = 10
To find: Time (t)
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 11
Ans: Thus, the approximate time required for 90 % decay of 174Ir in terms of its half-life is 3.3t1/2.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

Question 44.
A radioactive decay of element X (Z = 35) is 30 % complete in 2 hours. Calculate its half-life period.
Solution:
Given: t = 2 hrs,
N0 = 100
N= 100 – 30 = 70
To find: t1/2
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 12

Question 45.
What are the different modes by which radio elements decay?
Answer:
There are 3 modes by which radio elements decay: α-decay, β-decay and γ-emission.

Question 46.
What is α-decay?
Answer:
Radioactive isotope/radioelement when undergoes decay by the emission of α-particle from the nuclei then the process involved is referred to as α-decay.

Question 47.
Give equation for radium-222 when it undergoes decay by emission of an α-particle.
\({ }_{88}^{226} \mathrm{Ra} \longrightarrow{ }_{86}^{222} \mathrm{X}+{ }_{2}^{4} \mathrm{He}\)
Answer:
\({ }_{88}^{226} \mathrm{Ra} \longrightarrow{ }_{86}^{222} \mathrm{X}+{ }_{2}^{4} \mathrm{He}\)
Thus, atomic number of element ‘X’ will be 86 and atomic mass number will be 222.

Question 48.
Identify the mode of decay and state whether following equation is CORRECT or NOT. Justify.
\({ }_{92}^{238} \mathbf{U} \longrightarrow{ }_{90}^{234} \mathrm{Th}+{ }_{2}^{4} \mathbf{H e}\)
Ans:
i. It involves α-decay process.
ii. As uranium undergoes decay by emission of an α-particle (i.e., \({ }_{2}^{4} \mathrm{He}\)), daughter nuclei (in this case thorium) ‘will observe the decrease in atomic number by 2 units and decrease in atomic mass number by 4 units.
Hence, the given equation is correct.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

Question 49.
If radioactive element ‘X’ undergoes α-emission then what will be the position of daughter nuclei in the periodic table with respect to element ‘X’.
Answer:
If radioactive element ‘X’ undergoes α-emission, then corresponding daughter nuclei formed will occupy two places to the left of the periodic table with respect to element ‘X’.

Question 50.
What is β – decay? Also explain the changes that occur in the parent nuclei due to β-emission with one example.
Answer:
β – decay: The emission of negatively charged stream of β particles from the nucleus is called β – decay.
i. β – Particles are electrons with a charge and mass of an electron, mass being negligible as compared to the nuclei.
ii. When a nucleus decays by emitting a high-speed electron called a beta particle (β), a new nucleus is formed with the same mass number as the original nucleus and with an atomic number that is one unit greater than the parent nuclei.
General equation:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 13
Note: The mass number A does not change, the atomic number changes when a nuclei undergoes β-decay. e.g. Neptunium-238 decays to form plutonium-238:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 14

Question 51.
Mention the atomic number and atomic mass number of the parent radioelement ‘X’ in the following case if parent nuclei undergo β-emission.
i. \(\mathrm{X} \longrightarrow{ }_{94}^{238} \mathrm{Pu}\)
ii. \(\mathrm{X} \longrightarrow{ }_{95}^{241} \mathrm{Am}\)
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 15

Question 52.
How many α and β-particles are emitted in the following?
\({ }_{93}^{237} \mathrm{~Np} \longrightarrow{ }_{83}^{209} \mathrm{Bi}\)
Answer:
The emission of one α-particle decreases the mass number by 4 whereas the emission of β particles has no effect on mass number.
Net decrease in mass number = 237 – 209 = 28. This decrease is only due to α- particles. Hence, number of α- particles emitted = \(\frac {28}{4}\) = 7
Now, the emission of one α-particle decreases the atomic number by 2 and one β-particle emission increases it by 1.
The net decrease in atomic number = 93 – 83 = 10
The emission of 7 α-particles causes decrease in atomic number by 14. However, the actual decrease is only 10. It means atomic number increases by 4. This increase is due to emission of 4 β-particles.
Thus, 7 α and 4 β- particles are emitted.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

Question 53.
Explain the process of γ-decay in detail with a suitable example.
Answer:
γ-decay:
i. γ-Radiation is always accompanied with α and β decay processes.
ii. During γ-radiation, the daughter nucleus is left in energetically excited state which decays to the ground state of product with emission of γ-rays.
For example, \({ }_{92}^{238} \mathrm{U} \longrightarrow{ }_{90}^{234} \mathrm{Th}+{ }_{2}^{4} \mathrm{He}+\gamma\)
iii. \({ }_{92}^{238} \mathrm{U}\) emits α-particles of two different energies, 4.147 MeV (23%) and 4.195 MeV (77%).
iv. When α-particles of energy 4.147 MeV are emitted, 234Th is left in an excited state which de-excites to the ground state with emission of γ-ray photons with energy 0.0048 MeV.

Question 54.
Half-life of 209Po is 102 y. How many α-particles are emitted in 1 s from 2 mg sample of Po?
Solution:
Given: t1/2 = 102 y,
t = 1 s,
Amount of sample = 2 mg
To find: Number of α-particles emitted
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 16

Question 55.
Nuclear transmutation is a spontaneous or non-spontaneous process?
Answer:
Nuclear transmutation is a non-spontaneous (man-made) process.

Question 56.
What is nuclear transmutation?
Answer:
Nuclear transmutation:

  • It is the process of transformation of a stable nucleus into another nucleus which can be stable or unstable.
  • It can occur by the radioactive decay of a nucleus or the reaction of a nucleus with another particle.

Question 57.
Differentiate between chemical reactions and nuclear reactions.
Answer:
Chemical reactions:

  • Rearrangement of atoms by breaking and forming of chemical bonds.
  • Different isotopes of an element have same behaviour.
  • Only outer shell electrons take part in the chemical reaction.
  • The chemical reaction is accompanied by relatively small amounts of energy.
    e.g. chemical combustion of 1.0 g methane releases only 56 kJ energy.
  • The rates of reaction are influenced by the temperature, pressure, concentration and catalyst.

Nuclear reactions:

  • Elements or isotopes of one element are converted into another element in a nuclear reaction.
  • Isotopes of an element behave differently.
  • In addition to electrons, protons, neutrons, other elementary particles may be involved.
  • The nuclear reaction is accompanied by a large amount of energy change, e.g. The nuclear transformation of 1 g of Uranium – 235 release 8.2 × 107 kJ
  • The rate of nuclear reactions is unaffected by temperature, pressure and catalyst.

Question 58.
What will happen when a nucleus of J’B is bombarded with α-particle? Identify the process involved.
Answer:
i. When a stable nucleus of \({ }_{5}^{10} \mathrm{~B}\) is is bombarded with α-particle, it transforms into \({ }_{7}^{13} \mathrm{~N}\), which is radioactive and spontaneously emits positrons to produces \({ }_{6}^{13} \mathrm{C}\).
This can be represented as,
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 17
ii. The process involved is known as induced radioactivity or artificial radioactivity.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

Question 59.
Define: Nuclear fission
Answer:
Nuclear fission is defined as a process which involves splitting of the heavy nucleus of an atom into two nearly equal fragments accompanied by release of the large amount of energy.

Question 60.
Nuclear fission of 235U is a chain process. Justify.
Answer:

  • Nuclear fission of 235U occurs when nucleus absorbs neutron. When a uranium nucleus absorbs neutron, it breaks into two lighter fragments and releases energy (heat), more neutrons, and other radiation.
  • When one uranium 235 nucleus undergoes fission, three neutrons are emitted.
  • These neutrons emitted in fission cause more fission of the uranium nuclei which yield more neutrons. These neutrons again bring forth fission producing further neutrons.
  • The process continues indefinitely leading to chain reaction which continues even after the removal of bombarding neutrons.

Question 61.
Explain the term: Nuclear fusion and give one example.
Answer:
Nuclear fusion: In this process, the lighter nuclei combine (fuse) together and form a heavy nucleus which is accompanied by an enormous amount of energy.
e. g. The energy received by earth from the sun is due to the nuclear fusion reactions.

Question 62.
Which will produce more energy: Nuclear fission or fusion?
Answer:
Nuclear fusion will produce relatively more energy per given mass of fuel.

Question 63.
What is the range of temperature required to carry out nuclear fusion reaction?
Answer:
Nuclear fusion reaction requires extremely high temperature typically of the order of 108 K.

Question 64.
Distinguish between nuclear fission and nuclear fusion.
Answer:
Nuclear fission:

  • It is the process in which a heavy nucleus splits up into two lighter nuclei of nearly equal masses.
  • About 200 MeV of energy is available per fission in case of \({ }_{92}^{235} \mathrm{U}\).
  • The products of nuclear fission are, in general, radioactive.

Nuclear fusion:

  • It is the process in which two lighter nuclei combine together to form a heavy nucleus.
  • Energy available per fusion is much less but the energy per unit mass of material is much greater than that for fission of heavy nuclei.
  • The products of fusion are, in general, non-radioactive.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

Question 65.
Estimate the energy released in the fusion reaction.
\({ }_{1}^{2} \mathbf{H}+{ }_{2}^{3} \mathbf{H e} \longrightarrow{ }_{2}^{4} \mathbf{H e}+{ }_{1}^{1} \mathbf{H}\)
(Given atomic masses: 2H = 2.0141 u. 3He = 3.0160 u, 4He = 4.0026 u, 1H = 1.0078 u)
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 18

Question 66.
Explain the term: Radiocarbon dating in detail.
Answer:
Radiocarbon dating: The technique is used to find the age of historic and archaeological organic samples such as old wood samples and animal or human fossils.
Radioisotope used for carbon dating is 14C.
i. Radioactive 14C is formed in the upper atmosphere by bombardment of neutrons from cosmic ray on 14N.
\({ }_{7}^{14} \mathrm{~N}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{6}^{14} \mathrm{C}+{ }_{1}^{1} \mathrm{H}\)
ii. 14C combines with atmospheric oxygen to form 14CO2 which mixes with ordinary 12CO2.
iii. This carbon dioxide is absorbed by plants during photosynthesis.
iv. Animals eat plants which have absorbed a carbon dioxide (14CO2 + 12CO2). Hence, 14C becomes a part of plant and animal bodies.
v. As long as the plant is alive, the ratio 14C/12C remains constant.
vi. When the plant dies, photosynthesis will not occur and the ratio 14C/12C decreases with the decay of radioactive 14C which has a half-life 5730 years.
vii. The decay process of 14C is given below:
\({ }_{6}^{14} \mathrm{C} \longrightarrow{ }_{7}^{14} \mathrm{~N}+{ }_{-1}^{0} \mathrm{e}\)
viii. The activity (N) of given wood sample and that of fresh sample of live plant (N0) is measured, where, N0 denotes the activity of the given sample at the time of death.
ix. The age of the given wood sample, can be determined by applying following Formulae:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 19

Question 67.
What is nuclear power?
Answer:
Nuclear power is the electricity generated from the fission of uranium and plutonium.

Question 68.
Nuclear power is a clean source of energy. Justify.
Answer:
Nuclear power offers huge environmental benefits in producing electricity because,

  • it releases zero carbon dioxide.
  • it releases zero sulphur and nitrogen oxides.
  • these are atmospheric pollutants which pollute the air.

Thus, nuclear power is a clean source of energy.

Question 69.
How much energy will be produced by fission of 1 gram of 235U?
Answer:
Fission of 1 gram of uranium-235 produces about 24,000 kW/h of energy.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

Question 70.
Nuclear fission is an alternative energy source. Explain.
Answer:

  • Fission of 1 gram of uranium-235 produces about 24,000 kW/h of energy.
  • This is the same amount of energy produced by burning 3 tons of coal or 12 barrels of oil, or nearly 5000 m3 of natural gas.
  • The sources like coal, oil, natural gas are depleting very fast.
  • Also, the costs of petrol and other products from petroleum industry is increasing.
  • Thus, we need to depend on the nuclear fission as an alternative source of energy for electricity.

Question 71.
Label the follow ing diagram of simplified nuclear reactor.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 20
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 21

Question 72.
Explain in brief: Nuclear reactor
Answer:
Nuclear reactor: Nuclear reactor is a device for using atomic energy in controlled manner for peaceful purposes. During nuclear fission energy is released. The released energy can be utilized to generate electricity in a nuclear reactor.

Working of a nuclear reactor:

  • In a nuclear reactor, U235 or U239, a fissionable material is stacked with heavy water (D2O deuterium oxide) or graphite called moderator.
  • The neutrons produced in the fission pass through the moderator and lose a part of their energy. The slow neutrons produced during the process are captured which initiate new fission.
  • Cadmium rods are inserted in the moderator as they have ability to absorb neutrons. This controls the rate of chain reaction.
  • The energy released during the reaction appears as heat and removed by circulating a liquid (coolant). The coolant which has absorbed excess of heat from the reactor is passed over a heat exchanger for producing steam.
  • Steam is then passed through the turbines to produce electricity. Thus, the atomic energy produced with the use of fission reaction can be controlled in the nuclear reactor.
  • This process can be explored for peaceful purpose such as conversion of atomic energy into electrical energy which can be used for civilian purposes, ships, submarines, etc.

Note: Schematic diagram of nuclear power plant:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 22

Question 73.
Why cadmium rods are used in nuclear reactor?
Answer:
Cadmium rods are inserted in the moderator as they have ability to absorb neutrons which help to control the rate of chain reaction.

Question 74.
Why short-lived isotopes are used for diagnostic purposes?
Answer:
For diagnostic purpose, short-lived isotopes are used in order to limit the exposure time to radiation. Note: Diagnostic Radioisotopes are listed below:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 23

Question 75.
Give one application of therapeutic radioisotopes.
Answer:
Therapeutic radioisotopes are used to destroy abnormal cell growth in the body, e.g. cancerous cells.
Note: Therapeutic Radioisotopes are listed below:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 24

Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

Question 76.
Give example of isotopes used in following.
i. Isotope used in the treatment of leukaemia.
ii. Isotopes used in the preservation of agricultural products by irradiation.
Answer:
i. Isotope of phosphorus, \({ }_{15}^{35} \mathrm{P}\).
ii. 60Co or 137Cs

Question 77.
At which places has BARC Mumbai set up irradiation plants for preservation of agricultural produce?
Answer:
Bhabha Atomic Research Centre (BARC) Mumbai has set up irradiation plants for preservation of agricultural produce such as mangoes, onion and potatoes at Vashi (Navi Mumbai) and Lasalgaon (Nashik).

Question 78.
Why radiotracer technique is used in chemistry?
Answer:
Radiotracer technique is used to trace the path/mechanism followed by a reaction in the system.

Question 79.
The half-life for radioactive decay of an element X is 140 days. Complete the following flow chart showing decay of 1 g of X.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 25
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 26
Shortcut method:
Amount of the element X left after n half-lives is given as [X] = \(\frac{[\mathrm{X}]_{0}}{2^{n}}\)
e.g. \(\frac{1}{2^{4}} \mathrm{~g}=\frac{1}{16} \mathrm{~g}\)

Question 80.
A sample of 35S complete its 10% decay in 20 min, then calculate the time required to complete decay by 19%.
Answer:
When decay is 10 % complete, if N0 = 100 , then N = 100 – 10 = 90 and t = 20 minutes
When decay is 19 % complete, N = 100 – 19 = 81
Substituting these values in formula we get,
Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity 27

Multiple Choice Questions

1. Radius of the nucleus is related to the mass number A by ………….
(A) R = R0A1/2
(B) R = R0A
(C) R = R0A2
(D) R = R0A1/3
Answer:
(D) R = R0A1/3

2. Which of the following nuclides has the magic number of both protons and neutrons?
(A) \({ }_{50}^{115} \mathrm{Sn}\)
(B) \({ }_{81}^{206} \mathrm{Pb}\)
(C) \({ }_{82}^{208} \mathrm{Pb}\)
(D) \({ }_{50}^{118} \mathrm{Pb}\)
Answer:
(C) \({ }_{82}^{208} \mathrm{Pb}\)

Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

3. The probability of decay of a radioactive element depends on …………..
i. the age of nucleus
ii. the presence of catalyst
iii. pressure
iv. temperature
(A) only i. and iv
(B) all of these
(C) only ii. And iii.
(D) none of these
Answer:
(D) none of these

4. The decay constant for 67Ga is 7.0 × 10-4 s-1. If initial concentration of is 0.07 g, what is the half-life of 67Ga?
(A) 990 s
(B) 79.2 s
(C) 12375 s
(D) 10.10 × 10-4 s
Answer:
(A) 990 s

5. The half-life of radioactive element X having decay constant of 1.7 × 10-5 s-1 is …………
(A) 21.5 h
(B) 19.7 h
(C) 11.3 h
(D) 2.8 h
Answer:
(C) 11.3 h

6. A radioactive decay of element X (Z = 90) is 30 % complete in 30 minutes. It has a half-life period of ……………
(A) 24.3 min
(B) 58.3 min
(C) 102.3 min
(D) 120.3 min
Answer:
(B) 58.3 min

Maharashtra Board Class 11 Chemistry Important Questions Chapter 13 Nuclear Chemistry and Radioactivity

7. The half-life of radium is 1600 years. The fraction of a sample of radium that would remain after 6400 year is ……….
(A) \(\frac {1}{2}\)
(B) \(\frac {1}{4}\)
(C) \(\frac {1}{8}\)
(D) \(\frac {1}{16}\)
Answer:
(D) \(\frac {1}{16}\)

8. The half-life of an element is 5 d. How much time is required for the decay of 7/8th of the sample?
(A) 5 d
(B) 10 d
(C) 15 d
(D) 35/8 d
Answer:
(C) 15 d

9. The composition of an α-particle can be expressed as ……………….
(A) 1p + 1n
(B) 1p + 2n
(C) 2p + 1n
(D) 2p + 2n
Answer:
(D) 2p + 2n

10. If a radioactive nuclide of group 15 element undergoes β-particle emission, the daughter element will be found in ………………..
(A) 16 group
(B) 14 group
(C) 13 group
(D) same group
Answer:
(A) 16 group