Maharashtra Board 10th Class Maths Part 2 Practice Set 1.2 Solutions Chapter 1 Similarity

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 1.2 Geometry 10th Class Maths Part 2 Answers Solutions Chapter 1 Similarity.

Practice Set 1.2 Geometry10th Std Maths Part 2 Answers Chapter 1 Similarity

Question 1.
Given below are some triangles and lengths of line segments. Identify in which figures, ray PM is the bisector of ∠QPR.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 1
Solution:
In ∆ PQR,
\(\frac { PQ }{ PR } \) = \(\frac { 7 }{ 3 } \) (i)
\(\frac { QM }{ RM } \) = \(\frac { 3.5 }{ 1.5 } \) = \(\frac { 35 }{ 15 } \) = \(\frac { 7 }{ 3 } \) (ii)
∴ \(\frac { PQ }{ PR } \) = \(\frac { QM }{ RM } \) [From (i) and (ii)]
∴ Ray PM is the bisector of ∠QPR. [Converse of angle bisector theorem]

ii. In ∆PQR,
\(\frac { PQ }{ PR } \) = \(\frac { 10 }{ 7 } \) (i)
\(\frac { QM }{ RM } \) = \(\frac { 8 }{ 6 } \) = \(\frac { 4 }{ 3 } \) (ii)
∴ \(\frac { PQ }{ PR } \) ≠ \(\frac { QM }{ RM } \) [From (i) and (ii)]
∴ Ray PM is not the bisector of ∠QPR

iii. In ∆PQR,
\(\frac { PQ }{ PR } \) = \(\frac { 9 }{ 10 } \) (i)
\(\frac { QM }{ RM } \) = \(\frac { 3.6 }{ 4 } \) = \(\frac { 36 }{ 40 } \) = \(\frac { 9 }{ 10 } \) (ii)
∴ \(\frac { PQ }{ PR } \) = \(\frac { QM }{ RM } \) [From (i) and (ii)]
∴ Ray PM is the bisector of ∠QPR [Converse of angle bisector theorem]

Question 2.
In ∆PQR PM = 15, PQ = 25, PR = 20, NR = 8. State whether line NM is parallel to side RQ. Give reason.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 2
Solution:
PN + NR = PR [P – N – R]
∴ PN + 8 = 20
∴ PN = 20 – 8 = 12
Also, PM + MQ = PQ [P – M – Q]
∴ 15 + MQ = 25
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 3
∴ line NM || side RQ [Converse of basic proportionality theorem]

Question 3.
In ∆MNP, NQ is a bisector of ∠N. If MN = 5, PN = 7, MQ = 2.5, then find QP.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 4
Solution:
In ∆MNP, NQ is the bisector of ∠N. [Given]
∴\(\frac { PN }{ MN } \) = \(\frac { QP }{ MQ } \) [Property of angle bisector of a triangle]
∴\(\frac { 7 }{ 5 } \) = \(\frac { QP }{ 2.5 } \)
∴ QP = \(\frac { 7\times 2.5 }{ 5 } \)
∴ QP = 3.5 units

Question 4.
Measures of some angles in the figure are given. Prove that \(\frac { AP }{ PB } \) = \(\frac { AQ }{ QC } \)
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 5
Solution:
Proof
∠APQ = ∠ABC = 60° [Given]
∴ ∠APQ ≅ ∠ABC
∴ side PQ || side BC (i) [Corresponding angles test]
In ∆ABC,
sidePQ || sideBC [From (i)]
∴\(\frac { AP }{ PB } \) = \(\frac { AQ }{ QC } \) [Basic proportionality theorem]

Question 5.
In trapezium ABCD, side AB || side PQ || side DC, AP = 15, PD = 12, QC = 14, find BQ.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 6
Solution:
side AB || side PQ || side DC [Given]
∴\(\frac { AP }{ PD } \) = \(\frac { BQ }{ QC } \) [Property of three parallel lines and their transversals]
∴\(\frac { 15 }{ 12 } \) = \(\frac { BQ }{ 14 } \)
∴ BQ = \(\frac { 15\times 14 }{ 12 } \)
∴ BQ = 17.5 units

Question 6.
Find QP using given information in the figure.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 7
Solution:
In ∆MNP, seg NQ bisects ∠N. [Given]
∴\(\frac { PN }{ MN } \) = \(\frac { QP }{ MQ } \) [Property of angle bisector of a triangle]
∴\(\frac { 40 }{ 25 } \) = \(\frac { QP }{ 14 } \)
∴ QP = \(\frac { 40\times 14 }{ 25 } \)
∴ QP = 22.4 units

Question 7.
In the adjoining figure, if AB || CD || FE, then find x and AE.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 8
Solution:
line AB || line CD || line FE [Given]
∴\(\frac { BD }{ DF } \) = \(\frac { AC }{ CE } \) [Property of three parallel lines and their transversals]
∴\(\frac { 8 }{ 4 } \) = \(\frac { 12 }{ X } \)
∴ X = \(\frac { 12\times 4 }{ 8 } \)
∴ X = 6 units
Now, AE AC + CE [A – C – E]
= 12 + x
= 12 + 6
= 18 units
∴ x = 6 units and AE = 18 units

Question 8.
In ∆LMN, ray MT bisects ∠LMN. If LM = 6, MN = 10, TN = 8, then find LT.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 9
Solution:
In ∆LMN, ray MT bisects ∠LMN. [Given]
∴\(\frac { LM }{ MN } \) = \(\frac { LT }{ TN } \) [Property of angle bisector of a triangle]
∴\(\frac { 6 }{ 10 } \) = \(\frac { LT }{ 8 } \)
∴ LT = \(\frac { 6\times 8 }{ 10 } \)
∴ LT = 4.8 units

Question 9.
In ∆ABC,seg BD bisects ∠ABC. If AB = x,BC x+ 5, AD = x – 2, DC = x + 2, then find the value of x.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 10
Solution:
In ∆ABC, seg BD bisects ∠ABC. [Given]
∴\(\frac { AB }{ BC } \) = \(\frac { AD }{ CD } \) [Property of angle bisector of a triangle]
∴\(\frac { x }{ x+5 } \) = \(\frac { x-2 }{ x+2 } \)
∴ x(x + 2) = (x – 2)(x + 5)
∴ x2 + 2x = x2 + 5x – 2x – 10
∴ 2x = 3x – 10
∴ 10 = 3x – 2x
∴ x = 10

Question 10.
In the adjoining figure, X is any point in the interior of triangle. Point X is joined to vertices of triangle. Seg PQ || seg DE, seg QR || seg EF. Fill in the blanks to prove that, seg PR || seg DF.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 11
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 12

Question 11.
In ∆ABC, ray BD bisects ∠ABC and ray CE bisects ∠ACB. If seg AB = seg AC, then prove that ED || BC.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 13
Solution:
In ∆ABC, ray BD bisects ∠ABC. [Given]
∴\(\frac { AB }{ BC } \) = \(\frac { AE }{ EB } \) (i) [Property of angle bisector of a triangle]
Also, in ∆ABC, ray CE bisects ∠ACB. [Given]
∴\(\frac { AC }{ BC } \) = \(\frac { AE }{ EB } \) (ii) [Property of angle bisector of a triangle]
But, seg AB = seg AC (iii) [Given]
∴\(\frac { AB }{ BC } \) = \(\frac { AE }{ EB } \) (iv) [From (ii) and (iii)]
∴\(\frac { AD }{ DC } \) = \(\frac { AE }{ EB } \) [From (i) and (iv)]
∴ ED || BC [Converse of basic proportionality theorem]

Question 1.
i. Draw a ∆ABC.
ii. Bisect ∠B and name the point of intersection of AC and the angle bisector as D.
iii. Measure the sides.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 14
iv. Find ratios \(\frac { AB }{ BC } \) and \(\frac { AD }{ DC } \)
v. You will find that both the ratios are almost equal.
vi. Bisect remaining angles of the triangle and find the ratios as above. Verify that the ratios are equal. (Textbook pg. no. 8)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 15
Note: Students should bisect the remaining angles and verify that the ratios are equal.

Question 2.
Write another proof of the above theorem (property of an angle bisector of a triangle). Use the following properties and write the proof.
i. The areas of two triangles of equal height are proportional to their bases.
ii. Every point on the bisector of an angle is equidistant from the sides of the angle. (Textbook pg. no. 9)
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 16
Given: In ∆CAB, ray AD bisects ∠A.
To prove: \(\frac { AB }{ AC } \) = \(\frac { BD }{ DC } \)
Construction: Draw seg DM ⊥ seg AB A – M – B and seg DN ⊥ seg AC, A – N – C.
Solution:
Proof:
In ∆ABC,
Point D is on angle bisector of ∠A. [Given]
∴DM = DN [Every point on the bisector of an angle is equidistant from the sides of the angle]
\(\frac{A(\Delta A B D)}{A(\Delta A C D)}=\frac{A B \times D M}{A C \times D N}\) [Ratio of areas of two triangles is equal to the ratio of the product of their bases and corresponding heights]
∴ \(\frac{A(\Delta A B D)}{A(\Delta A C D)}=\frac{A B}{A C}\) (ii) [From (i)]
Also, ∆ABD and ∆ACD have equal height.
∴ \(\frac{\mathrm{A}(\Delta \mathrm{ABD})}{\mathrm{A}(\Delta \mathrm{ACD})}=\frac{\mathrm{BD}}{\mathrm{CD}}\) (iii) [Triangles having equal height]
∴\(\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{DC}}\) [From (ii) and (iii)]

Question 3.
i. Draw three parallel lines.
ii. Label them as l, m, n.
iii. Draw transversals t1 and t2.
iv. AB and BC are intercepts on transversal t1.
v. PQ and QR are intercepts on transversal t2.
vi. Find ratios \(\frac { AB }{ BC } \) and \(\frac { PQ }{ QR } \). You will find that they are almost equal. Verify that they are equal.(Textbook pg, no. 10)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 17
(Students should draw figures similar to the ones given and verify the properties.)

Question 4.
In the adjoining figure, AB || CD || EF. If AC = 5.4, CE = 9, BD = 7.5, then find DF.(Textbook pg, no. 12)
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 18
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 19

Question 5.
In ∆ABC, ray BD bisects ∠ABC. A – D – C, side DE || side BC, A – E – B, then prove that \(\frac { AB }{ BC } \) = \(\frac { AE }{ EB } \) (Textbook pg, no. 13)
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 20
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.2 21

Maharashtra Board 10th Class Maths Part 2 Practice Set 1.1 Solutions Chapter 1 Similarity

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 1.1 Geometry 10th Class Maths Part 2 Answers Solutions Chapter 1 Similarity.

Practice Set 1.1 Geometry 10th Std Maths Part 2 Answers Chapter 1 Similarity

Question 1.
Base of a triangle is 9 and height is 5. Base of another triangle is 10 and height is 6. Find the ratio of areas of these triangles.
Solution:
Let the base, height and area of the first triangle be b1, h1, and A1 respectively.
Let the base, height and area of the second triangle be b2, h2 and A2 respectively.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 1

[Since Ratio of areas of two triangles is equal to the ratio of the product of their bases and corresponding heights]
∴ The ratio of areas of the triangles is 3:4.

Question 2.
In the adjoining figure, BC ± AB, AD _L AB, BC = 4, AD = 8, then find \(\frac{A(\Delta A B C)}{A(\Delta A D B)}\)
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 2
Solution:
∆ABC and ∆ADB have same base AB.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 3
[Since Triangles having equal base]

Question 3.
In the adjoining figure, seg PS ± seg RQ, seg QT ± seg PR. If RQ = 6, PS = 6 and PR = 12, then find QT.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 4
Solution:
In ∆PQR, PR is the base and QT is the corresponding height.
Also, RQ is the base and PS is the corresponding height.
\(\frac{A(\Delta P Q R)}{A(\Delta P Q R)}=\frac{P R \times Q T}{R Q \times P S}\) [Ratio of areas of two triangles is equal to the ratio of the product of their bases and corresponding heights]
∴ \(\frac{1}{1}=\frac{P R \times Q T}{R Q \times P S}\)
∴ PR × QT = RQ × PS
∴ 12 × QT = 6 × 6
∴ QT = \(\frac { 36 }{ 12 } \)
∴ QT = 3 units

Question 4.
In the adjoining figure, AP ⊥ BC, AD || BC, then find A(∆ABC) : A(∆BCD).
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 5
Solution:
Draw DQ ⊥ BC, B-C-Q.

Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 6
AD || BC [Given]
∴ AP = DQ   (i)  [Perpendicular distance between two parallel lines is the same]
∆ABC and ∆BCD have same base BC.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 7

Question 5.
In the adjoining figure, PQ ⊥ BC, AD ⊥ BC, then find following ratios.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 8
Solution:
i. ∆PQB and tPBC have same height PQ.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 9
ii. ∆PBC and ∆ABC have same base BC.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 10
iii. ∆ABC and ∆ADC have same height AD.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 11

Question 1.
Find \(\frac{A(\Delta A B C)}{A(\Delta A P Q)}\)
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 12
Solution:
In ∆ABC, BC is the base and AR is the height.
In ∆APQ, PQ is the base and AR is the height.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Similarity Practice Set 1.1 13

Maharashtra Board 10th Class Maths Part 1 Practice Set 6.6 Solutions Chapter 6 Statistics

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 6.6 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 6 Statistics.

Practice Set 6.6 Algebra 10th Std Maths Part 1 Answers Chapter 6 Statistics

Question 1.
The age group and number of persons, who donated blood in a blood donation camp is given below.
Draw a pie diagram from it.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.6 1
Solution:
Total number of persons = 80 + 60 + 35 + 25 = 200
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.6 2

Question 2.
The marks obtained by a student in different subjects are shown. Draw a pie diagram showing the information.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.6 3
Solution:
Total marks obtained = 50 + 70 + 80 + 90 + 60 + 50 = 400
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.6 4

Question 3.
In a tree plantation programme, the number of trees planted by students of different classes is given in the following table. Draw a pie diagram showing the information.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.6 5
Solution:
Total number of trees planted = 40 + 50 + 75 + 50 + 70 + 75 = 360
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.6 6

Question 4.
The following table shows the percentages of demands for different fruits registered with a fruit vendor. Show the information by a pie diagram.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.6 7
Solution:
Total percentage = 30 + 15 + 25 + 20 + 10 = 100%
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.6 8

Question 5.
The pie diagram in the given figure shows the proportions of different workers in a town. Answer the following questions with its help.
i. If the total workers is 10,000, how many of them are in the field of construction?
ii. How many workers are working in the administration?
iii. What is the percentage of workers in production?
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.6 9
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.6 10
∴ There are 2000 workers working in the field of construction.

Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.6 11
∴ There are 1000 workers working in the administration.

Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.6 12
∴ 25% of workers are working in the production field.

Question 6.
The annual investments of a family are shown in the given pie diagram. Answer the following questions based on it.
i. If the investment in shares is ? 2000, find the total investment.
ii. How much amount is deposited in bank?
iii. How much more money is invested in immovable property than in mutual fund?
iv. How much amount is invested in post?
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.6 13
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.6 14
The total investment is ₹ 12000.

ii. Central angle for deposit in bank (θ) = 90°
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.6 15
∴ The amount deposited in bank is ₹ 3000.

iii. Difference in central angle for immovable property and mutual fund (θ) = 120° – 60° = 60°
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.6 16
∴ ₹ 2000 more is invested in immovable property than in mutual fund.

iv. Central angle for post (θ) = 30°
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.6 17
∴ The amount invested in post is ₹ 1000.

Maharashtra Board 10th Class Maths Part 1 Practice Set 6.5 Solutions Chapter 6 Statistics

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 6.5 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 6 Statistics.

Practice Set 6.5 Algebra 10th Std Maths Part 1 Answers Chapter 6 Statistics

Question 1.
Observe the following frequency polygon and write the answers of the questions below it.
i. Which class has the maximum number of students?
ii. Write the classes having zero frequency.
iii. What is the class mark of the class, having frequency of 50 students?
iv. Write the lower and upper class limits of the class whose class mark is 85.
v. How many students are in the class 80 – 90?
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.5 1
Solution:
i. The class 60 – 70 has the maximum number of students.
ii. The classes 20 – 30 and 90 – 100 have frequency zero.
iii. The class mark of the class having 50 students is 55.
iv. The lower and upper class limits of the class having class mark 85 are 80 and 90 respectively.
v. There are 15 students in the class 80 – 90.

Question 2.
Show the following data by a frequency polygon.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.5 2
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.5 3
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.5 4

Question 3.
The following table shows the classification of percentages of marks of students and the number of students. Draw a frequency polygon from the table.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.5 5
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.5 6 Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.5 7

Maharashtra Board 10th Class Maths Part 1 Practice Set 6.4 Solutions Chapter 6 Statistics

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 6.4 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 6 Statistics.

Practice Set 6.4 Algebra 10th Std Maths Part 1 Answers Chapter 6 Statistics

Question 1.
Draw a histogram of the following data.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.4 1
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.4 2

Question 2.
The table below shows the yield of jowar per acre. Show the data by histogram.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.4 3
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.4 4 Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.4 5

Question 3.
In the following table, the investment made by 210 families is shown. Present it in the form of a histogram.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.4 6
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.4 7

Question 4.
Time allotted for the preparation of an examination by some students is shown in the table. Draw a histogram to show the information.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.4 8
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.4 9

Maharashtra Board 10th Class Maths Part 1 Practice Set 6.3 Solutions Chapter 6 Statistics

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 6.3 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 6 Statistics.

Practice Set 6.3 Algebra 10th Std Maths Part 1 Answers Chapter 6 Statistics

Question 1.
The following table shows the information regarding the milk collected from farmers on a milk collection centre and the content of fat in the milk, measured by a lactometer. Find the mode of fat content.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.3 1
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.3 2
Here, the maximum frequency is 80.
∴ The modal class is 4 – 5.
L = lower class limit of the modal class = 4
h = class interval of the modal class = 1
f1 = frequency of the modal class = 80
f0 = frequency of the class preceding the modal class = 70
f2 = frequency of the class succeeding the modal class = 60
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.3 3
∴ The mode of the fat content is 4.33%.

Question 2.
Electricity used by some families is shown in the following table. Find the mode of use of electricity.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 20
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.3 5
Here, the maximum frequency is 100.
∴ The modal class is 60 – 80.
L = lower class limit of the modal class = 60
h = class interval of the modal class = 20
f1 = frequency of the modal class = 100
f0 = frequency of the class preceding the modal class = 70
f2 = frequency of the class succeeding the modal class = 80
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.3 6
∴ The mode of use of electricity is 72 units.

Question 3.
Grouped frequency distribution of supply of milk to hotels and the number of hotels is given in the following table. Find the mode of the supply of milk.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.3 7
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.3 8
Here, the maximum frequency is 35.
∴ The modal class is 9 – 11.
L = lower class limit of the modal class = 9
h = class interval of the modal class = 2
f1 = frequency of the modal class = 35
f0 = frequency of the class preceding the modal class = 20
f2 = frequency of the class succeeding the modal class = 18
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.3 9
∴ The mode of the supply of milk is 9.94 litres (approx.).

Question 4.
The following frequency distribution table gives the ages of 200 patients treated in a hospital in a week. Find the mode of ages of the patients.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.3 10
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.3 11
Here, the maximum frequency is 50.
The modal class is 9.5 – 14.5.
L = lower class limit of the modal class = 9.5
h = class interval of the modal class = 5
f1 = frequency of the modal class = 50
f0 = frequency of the class preceding the modal class = 32
f2 = frequency of the class succeeding the modal class = 36
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.3 12
∴ The mode of the ages of the patients is 12.31 years (approx.).

Maharashtra Board 10th Class Maths Part 1 Practice Set 6.2 Solutions Chapter 6 Statistics

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 6.2 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 6 Statistics.

Practice Set 6.2 Algebra 10th Std Maths Part 1 Answers Chapter 6 Statistics

Statistics Practice Set 6.2 Question 1.
The following table shows classification of number of workers and the number of hours they work in a software company. Find the median of the number of hours they work.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.2 1
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.2 2
Cumulative frequency which is just greater than (or equal) to 500 is 650.
∴ The median class is 10 – 12.
Now, L = 10, f = 500, cf = 150, h = 2
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.2 3
∴ The median of the number of hours the workers work is 11.4 hours.

10th Class Algebra Practice Set 6.2 Question 2.
The frequency distribution table shows the number of mango trees in a grove and their yield of mangoes. Find the median of data.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.2 4
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.2 5
Here, total frequency = ∑fi = N = 250
∴ \(\frac { N }{ 2 } \) = \(\frac { 250 }{ 2 } \) = 125
Cumulative frequency which is just greater than (or equal) to 125 is 153.
∴ The median class is 150 – 200.
Now, L = 150, f = 90, cf = 63, h = 50
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.2 6
∴ The median of the given data is 184 mangoes (approx).

Statistics Class 10 Practice Set 6.2 Question 3.
The following table shows the classification of number of vehicles and their speeds on Mumbai-Pune express way. Find the median of the data.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.2 7
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.2 8
Here, total frequency = ∑fi = N = 200
∴ \(\frac { N }{ 2 } \) = \(\frac { 200 }{ 2 } \) = 100
Cumulative frequency which is just greater than (or equal) to 100 is 184.
∴ The median class is 74.5 – 79.5.
Now, L = 74.5, f = 85, cf = 99, h = 5
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.2 9
∴ The median of the given data is 75 km/hr (approx.).

Practice Set 6.2 Geometry Class 10 Question 4.
The production of electric bulbs in different factories is shown in the following table. Find the median of the productions.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.2 10
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.2 11
Cumulative frequency which is just greater than (or equal) to 52.5 is 67.
∴ The median class is 50 – 60.
Now, L = 50, f = 20, cf = 47, h = 10
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.2 12
∴ The median of the productions is 52750 bulbs (approx.).

Practice Set 6.2 Question 1.
If the number of scores is odd, then the (\(\frac { n+1 }{ 2 } \))th score is the median of the data. That is, the number of scores below as well as above \({ K }_{ \frac { n+1 }{ 2 } }\) is \(\frac { n-1 }{ 2 } \) Verify the fact by taking n = 2m + I. (Textbk pg. no. 139)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.2 13
The sequence of the terms of scores is 1,2, 3, …….., m, m + 1, m + 2, …, 2m + 1
Thus, we have to prove that m + 1 is the middle term if the number of scores is 2m + 1
i.e. to prove
number of terms from 1 to m = number of terms from m + 2 to 2m + 1 …(i)
Consider the L.H.S. of equation (i)
The sequence is an A.P. with a = 1,d = 1, tn1 = m
tn1 = a + (n1 – 1) d
∴ m = 1 + (n1 – 1)1
∴ m = 1 + n1 – 1
∴ m = n1
Consider the R.H.S. of equation (ii)
The sequence is an A.P. with a = m + 2, d = 1, tn2 = 2m + 1
tn2 = a + (n2 – 1)d
∴ 2m + 1 = m + 2 + (n2 – 1)1
∴ 2m + 1 = m + n2 + 1
∴ m = n2
∴ number of terms from 1 to m = number of terms from m + 2 to 2m + 1 = m = \(\frac { n-1 }{ 2 } \)
∴ m + 1 is the middle term if the number of scores is 2m + 1.

Question 2.
If the number of the scores is even, then the mean of the middle two terms is the median. This is because the number of terms below \({ K }_{ \frac { n }{ 2 } }\) and above \({ K }_{ \frac { n+2 }{ 2 } }\) is equal, which is \(\frac { n-2 }{ 2 } \). Verify this by taking n = 2m. (Textbook pg. no. 139)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.2 14
The sequence of the terms of scores is 1, 2, 3 … m – 1, m, m + 1, m + 2,…., 2m
Thus, we have to prove that m and m + 1 are the middlemost terms if the number of scores is 2m.
i.e. to prove
number of terms from 1 to m – 1 = number of terms from m + 2 to 2m …(i)
Consider the L.H.S. of equation (i)
The sequence is an A.P. with a = 1, d = 1, tn1 = m – 1
tn1 = a + (n1 – 1)d
∴ m – 1 = 1 + (n1 – 1)1
∴m – 1 = 1 + n1 – 1
∴ n1 = m – 1
Consider the R.H.S. of equation (i)
The sequence is an A.P. with a = m + 2, d = 1, tn2= 2m
tn2= a + (n2 – 1) d
∴ 2m = m + 2 + (n2 – 1)1
∴ 2m = m + 2 + n2 – 1
∴ n2 = m – 1
∴ number of terms from 1 to m – 1 = number of terms from m + 2 to 2m = m – 1 = \(\frac { n-2 }{ 2 } \)
∴ m and m + 1 are the middlemost terms if the number of scores is 2m.

Maharashtra Board 10th Class Maths Part 1 Problem Set 5 Solutions Chapter 5 Probability

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Problem Set 5 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 5 Probability.

Problem Set 5 Algebra 10th Std Maths Part 1 Answers Chapter 5 Probability

Question 1.
Choose the correct alternative answer for each of the following questions.

i. Which number cannot represent a probability?
(A) \(\frac { 2 }{ 3 } \)
(B) 1.5
(C) 15%
(D) 0.7
Answer:
The probability of any 0 to 1 or 0% to 100%. event is from
(B)

ii. A die is rolled. What is the probability that the number appearing on upper face is less than 3?
(A) \(\frac { 1 }{ 6 } \)
(B) \(\frac { 1 }{ 3 } \)
(C) \(\frac { 1 }{ 2 } \)
(D) 0
Answer:
(B)

iii. What is the probability of the event that a number chosen from 1 to 100 is a prime number?
(A) \(\frac { 1 }{ 5 } \)
(B) \(\frac { 6 }{ 25 } \)
(C) \(\frac { 1 }{ 4 } \)
(D) \(\frac { 13 }{ 50 } \)
Answer:
n(S) = 100
Let A be the event that the number chosen is a prime number.
∴ A = {2, 3, 5. , 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}
∴ n(A) = 25
∴ P(A) = \(\frac { n(A) }{ n(S) } \) = \(\frac { 25 }{ 100 } \) = \(\frac { 1 }{ 4 } \)
(C)

iv. There are 40 cards in a bag. Each bears a number from 1 to 40. One card is drawn at random. What is the probability that the card bears a number which is a multiple of 5?
(A) \(\frac { 1 }{ 5 } \)
(B) \(\frac { 3 }{ 5 } \)
(C) \(\frac { 4 }{ 5 } \)
(D) \(\frac { 1 }{ 3 } \)
Answer:
(A)

v. If n(A) = 2, P(A) = \(\frac { 1 }{ 5 } \), then n(S) = ?
(A) 10
(B) \(\frac { 5 }{ 2 } \)
(C) \(\frac { 2 }{ 5 } \)
(D) \(\frac { 1 }{ 3 } \)
Answer:
(A)

Question 2.
Basketball players John, Vasim, Akash were practising the ball drop in the basket. The probabilities of success for John, Vasim and Akash are \(\frac { 4 }{ 5 } \), 0.83 and 58% respectively. Who had the greatest probability of success ?
Solution:
The probability that the ball is dropped in the basket by John = \(\frac { 4 }{ 5 } \) = 0.80
The probability that the ball is dropped in the basket by Vasim = 0.83
The probability that the ball is dropped in the basket by Akash = 58% = \(\frac { 58 }{ 100 } \) = 0.58
0.83 > 0.80 > 0.58
∴ Vasim has the greatest probability of success.

Question 3.
In a hockey team there are 6 defenders , 4 offenders and 1 goalie. Out of these, one player is to be selected randomly as a captain. Find the probability of the selection that:
i. The goalie will be selected.
ii. A defender will be selected.
Solution:
Total number of players in the hockey team
= 6 + 4 + 1 = 11
∴ n(S) = 11

i. Let A be the event that the captain selected will be a goalie.
There is only one goalie in the hockey team.
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 1

ii. Let B be the event that the captain selected will be a defender.
There are 6 defenders in the hockey team.
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 2

Question 4.
Joseph kept 26 cards in a cap, bearing one English alphabet on each card. One card is drawn at random. What is the probability that the card drawn is a vowel card ?
Solution:
Each card bears an English alphabet.
∴ n(S) = 26
Let A be the event that the card drawn is a vowel card.
There are 5 vowels in English alphabets.
∴ A = {a, e, i, o, u}
∴ n(A) = 5
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 3
∴ The probability that the card drawn is a vowel card is \(\frac { 5 }{ 26 } \).

Question 5.
A balloon vendor has 2 red, 3 blue and 4 green balloons. He wants to choose one of them at random to give it to Pranali. What is the probability of the event that Pranali gets,
i. a red balloon.
ii. a blue balloon,
iii. a green balloon.
Solution:
Let the 2 red balloon be R1, R2,
3 blue balloons be B1, B2, B3, and
4 green balloons be G1, G2, G3, G4.
∴ Sample space
S = {R1, R2, B1, B2, B3, G1, G2, G3, G4}
∴ n(S) = 9

i. Let A be the event that Pranali gets a red balloon.
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 4
∴ The probability that Pranali gets a red balloon is \(\frac { 2 }{ 9 } \)

ii. Let B be the event that Pranali gets a blue balloon.
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 5
∴ The probability that Pranali gets a blue balloon is \(\frac { 1 }{ 3 } \).

iii. Let C be the event that Pranali gets a green balloon.
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 6
∴ The probability that Pranali gets a green balloon is \(\frac { 4 }{ 9 } \).

Question 6.
A box contains 5 red, 8 blue and 3 green pens. Rutuja wants to pick a pen at random. What is the probability that the pen is blue?
Solution:
Let 5 red pens be R1, R2, R3, R4, R5.
8 blue pens be B1, B2, B3, B4, B5, B6, B7, B8. and
3 green pens be G1, G2, G3.
∴ Sample space
S = {R1, R2, R3, R4, R5, B1, B2, B3, B4, B5, B6, B7, B8, G1, G2, G3}
∴ n(S) = 16
Let A be the event that Rutuja picks a blue pen.
∴ A = {B1, B2, B3, B4, B5, B6, B7, B8}
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 7
∴ The probability that Rutuja picks a blue pen is \(\frac { 1 }{ 2 } \).

Question 7.
Six faces of a die are as shown below.
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 8
If the die is rolled once, find the probability of
i. ‘A’ appears on upper face.
ii. ‘D’ appears on upper face.
Solution:
Sample space
S = {A, B, C, D, E, A}
∴ n (S) = 6
i. Let R be the event that ‘A’ appears on the upper face.
∴ R = {A, A}
∴ n(R) = 2
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 9

ii. Let Q be the event that ‘D’ appears on the upper face.
Total number of faces having ‘D’ on it = 1
Q = {D}
∴ n(Q) = 1
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 10
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 11

Question 8.
A box contains 30 tickets, bearing only one number from 1 to 30 on each. If one ticket is drawn at random, find the probability of an event that the ticket drawn bears
i. an odd number.
ii. a complete square number.
Solution:
Sample space,
S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}
∴ n(S) = 30

i. Let A be the event that the ticket drawn bears an odd number.
∴ A = {1,3,5,7,9,11,13,15,17,19,21, 23,25,27,29}
∴ n(A) =15
E:\Prasanna\Learncram\Class 10 Maths\ch 5\Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 14.png

ii. Let B be the event that the ticket drawn bears a complete square number.
∴ B = {1,4,9,16,25}
∴ n(B) = 5
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 13

Question 9.
Length and breadth of a rectangular garden are 77 m and 50 m. There is a circular lake in the garden having diameter 14 m. Due to wind, a towel from a terrace on a nearby building fell into the garden. Then find the probability of the event that it fell in the lake.
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 14
Solution:
Area of the rectangular garden
= length × breadth
= 77 × 50
∴ Area of the rectangular garden = 3850 sq.m
Radius of the lake = \(\frac { 14 }{ 2 } \) = 7 m
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 15
∴ The probability of the event that the towel tell in the lake is \(\frac { 1 }{ 25 } \).

Question 10.
In a game of chance, a spinning arrow comes to rest at one of the numbers 1, 2, 3, 4, 5, 6, 7, 8. All these are equally likely outcomes. Find the probability that it will rest at
i. 8.
ii. an odd number.
iii. a number greater than 2.
iv. a number less than 9.
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 16
Solution:
Sample space (S) = {1,2, 3, 4, 5, 6, 7, 8}
∴ n(S) = 8
i. Let A be the event that the spinning arrow comes to rest at 8.
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 17
ii. Let B be the event that the spinning arrow comes to rest at an odd number.
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 18
iii. Let C be the event that the spinning arrow comes to rest at a number greater than 2.
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 19
iv. Let D be the event that the spinning arrow comes to rest at a number less than 9.
∴ D = {1,2, 3, 4, 5, 6, 7, 8}
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 20

Question 11.
There are six cards in a box, each bearing a number from 0 to 5. Find the probability of each of the following events, that a card drawn shows,
i. a natural number.
ii. a number less than 1.
iii. a whole number.
iv. a number greater than 5.
Solution:
Sample space (S) = {0, 1, 2, 3, 4, 5}
∴ n(S) = 6

i. Let A be the event that the card drawn shows a natural number.
∴ A = {1,2,3,4,5}
∴ n(A) = 5
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 21

ii. Let B be the event that the card drawn shows a number less than 1.
∴ B = {0}
∴ n(B) = 1
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 22

iii. Let C be the event that the card drawn shows a whole number.
∴ C = {0,1, 2, 3, 4, 5}
∴ n(C) = 6
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 23

iv. Let D be the event that the card drawn shows a number greater than 5.
Here, the greatest number is 5.
∴ Event D is an impossible event.
∴ D = { }
∴ n(D) = 0
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 24

Question 12.
A bag contains 3 red, 3 white and 3 green balls. One ball is taken out of the bag at random. What is the probability that the ball drawn is:
i. red.
ii. not red.
iii. either red or white.
Solution:
Let the three red balls be R1, R2, R3, three white balls be W1, W2, W3 and three green balls be G1, G2, G3.
∴ Sample space,
S = {R1, R2, R3, W1, W2, W3, G1, G2, G3}
∴ n(S) = 9

i. Let A be the event that the ball drawn is red.
∴ A = {R1, R2, R3}
∴ n(A) = 3
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 25

ii. Let B be the event that the ball drawn is not red.
B = {W1,W2,W3,G1,G2,G3}
∴ n(B) = 6
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 26

iii. Let C be the event that the ball drawn is red or white.
∴ C = {R1, R2, R3, W1, W2, W3}
∴ n(C) = 6
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 27

Question 13.
Each card bears one letter from the word ‘mathematics’. The cards are placed on a table upside down. Find the probability that a card drawn bears the letter ‘m’.
Solution:
Sample space
= {m, a, t, h, e, m, a, t, i, c, s}
∴ n(S) = 11
Let A be the event that the card drawn bears the letter ‘m’
∴ A = {m, m}
∴ n(A) = 2
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 28
∴ The probability that a card drawn bears letter ‘m’ is \(\frac { 2 }{ 11 } \).

Question 14.
Out of 200 students from a school, 135 like Kabaddi and the remaining students do not like the game. If one student is selected at random from all the students, find the probability that the student selected dosen’t like Kabaddi.
Solution:
Total number of students in the school = 200
∴ n(S) = 200
Number of students who like Kabaddi = 135
∴ Number of students who do not like Kabaddi
= 200 – 135 = 65
Let A be the event that the student selected does not like Kabaddi.
∴ n(A) = 65
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 29
∴ The probability that the student selected doesn’t like kabaddi is \(\frac { 13 }{ 40 } \).

Question 15.
A two digit number is to be formed from the digits 0, 1, 2, 3, 4. Repetition of the digits is allowed. Find the probability that the number so formed is a:
i. prime number.
ii. multiple of 4.
iii multiple of 11.
Solution:
Sample space
(S) = {10, 11, 12, 13, 14,
20, 21, 22, 23, 24,
30, 31, 32, 33, 34,
40, 41, 42, 43, 44}
∴ n(S) = 20

i. Let A be the event that the number so formed is a prime number.
∴ A = {11,13,23,31,41,43}
∴ n(A) = 6
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 30

ii. Let B be the event that the number so formed is a multiple of 4.
∴ B = {12,20,24,32,40,44}
∴ n(B) = 6
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 31

iii. Let C be the event that the number so formed is a multiple of 11.
∴ C = {11,22,33,44}
∴ n(C) = 4
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 32

Question 16.
The faces of a die bear numbers 0,1, 2, 3,4, 5. If the die is rolled twice, then find the probability that the product of digits on the upper face is zero.
Solution:
Sample space,
S = {(0, 0), (0,1), (0,2),
(1,0), (1,1), (1,2),
(2,0), (2,1), (2,2),
(3.0), (3,1), (3,2),
(4.0), (4,1), (4,2),
(5.0), (5,1), (5,2),
∴ n(S) = 36
Let A be the event that the product of digits on the upper face is zero.
∴ A = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1,0), (2, 0), (3,0), (4, 0), (5,0)}
∴ n(A) = 11
Maharashtra Board Class 10 Maths Solutions Chapter 5 Probability Problem Set 5 33
∴ The probability that the product of the digits on the upper face is zero is \(\frac { 11 }{ 36 } \).

Maharashtra Board 10th Class Maths Part 1 Practice Set 6.1 Solutions Chapter 6 Statistics

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 6.1 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 6 Statistics.

Practice Set 6.1 Algebra 10th Std Maths Part 1 Answers Chapter 6 Statistics

Question 1.
The following table shows the number of students and the time they utilized daily for their studies. Find the mean time spent by students for their studies by direct method.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 1
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 2
∴ The mean of the time spent by the students for their studies is 4.36 hours.

Question 2.
In the following table, the toll paid by drivers and the number of vehicles is shown. Find the mean of the toll by ‘assumed mean’ method.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 3
Solution:
Let us take the assumed mean (A) = 550
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 4
∴ The mean of the toll paid by the drivers is ₹ 521.43.

Question 3.
A milk centre sold milk to 50 customers. The table below gives the number of customers and the milk they purchased. Find the mean of the milk sold by direct method.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 5
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 6
∴ The mean of the milk sold is 2.82 litres.

Question 4.
A frequency distribution table for the production of oranges of some farm owners is given below. Find the mean production of oranges by ‘assumed mean’ method.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 7
Solution:
Let us take the assumed mean (A) = 37.5
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 8
∴ The mean of the production of oranges is ₹ 35310.

Question 5.
A frequency distribution of funds collected by 120 workers in a company for the drought affected people are given in the following table. Find the mean of he funds by ‘step deviation’ method.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 9
Solution:
Here, we take A = 1250 and g = 500
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 10
∴ The mean of the funds collected is ₹ 987.5.

Question 6.
The following table gives the information of frequency distribution of weekly wages of 150 workers of a company. Find the mean of the weekly wages by ‘step deviation’ method.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 11
Solution:
Here, we take A = 2500 and g = 1000.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 12
∴ The mean of the weekly wages is ₹ 3070.

Question 1.
The daily sale of 100 vegetable vendors is given in the following table. Find the mean of the sale by direct method. (Textbook pg. no. 133 and 134)
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 13
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 14
The mean of the sale is 2150.

Question 2.
The amount invested in health insurance by 100 families is given in the following frequency table. Find the mean of investments using direct method and assumed mean method. Check whether the mean found by the two methods is the same as calculated by step deviation method (Ans: ₹ 2140). (Textbook pg. no. 135 and 136)
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 15
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 16
∴ The mean of investments in health insurance is ₹ 2140.
Assumed mean method:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 17
∴ The mean of investments in health insurance is ₹ 2140.
∴ Mean found by direct method and assumed mean method is the same as calculated by step deviation method.

Question 3.
The following table shows the funds collected by 50 students for flood affected people. Find the mean of the funds.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 18
If the number of scores in two consecutive classes is very low, it is convenient to club them. So, in the above example, we club the classes 0 – 500, 500 – 1000 and 2000 – 2500, 2500 – 3000. Now the new table is as follows
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 19
i. Solve by direct method.
ii. Verily that the mean calculated by assumed mean method is the same.
iii. Find the mean in the above example by taking A = 1750. (Textbook pg. no. 137)
Solution:
i. Direct method:
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 20
∴ The mean of the funds is ₹ 1390.

ii. Assumed mean method:
Here, A = 1250
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 21
∴ The mean calculated by assumed mean method is the same.

iii. Step deviation method:
Here, we take A = 1750 and g = 250
Maharashtra Board Class 10 Maths Solutions Chapter 6 Statistics Practice Set 6.1 22
∴ The mean of the funds is ₹ 1390.

Maharashtra Board 10th Class Maths Part 1 Practice Set 5.4 Solutions Chapter 5 Probability

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 5.4 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 5 Probability.

Practice Set 5.4 Algebra 10th Std Maths Part 1 Answers Chapter 5 Probability

Question 1.
If two coins are tossed, find the probability of the following events.
i. Getting at least one head.
ii. Getting no head.
Solution:
Sample space,
S = {HH, HT, TH, TT}
∴ n(S) = 4

i. Let A be the event of getting at least one head.
∴ A = {HT, TH, HH}
∴ n(A) = 3
∴ P(A) = \(\frac { n(A) }{ n(S) } \)
∴ P(A) = \(\frac { 3 }{ 4 } \)

ii. Let B be the event of getting no head.
∴ B = {TT}
∴ n(B) = 1
∴ P(B) = \(\frac { n(B) }{ n(S) } \)
∴ P(B) = \(\frac { 1 }{ 4 } \)
∴ P(A) = \(\frac { 3 }{ 4 } \); P(B) = \(\frac { 1 }{ 4 } \)

Question 2.
If two dice are rolled simultaneously, find the probability of the following events.
i. The sum of the digits on the upper faces is at least 10.
ii. The sum of the digits on the upper faces is 33.
iii. The digit on the first die is greater than the digit on second die.
Solution:
Sample space,
s = {(1,1), (1,2), (1,3), (1,4), (1, 5), (1,6),
(2, 1), (2, 2), (2,3), (2,4), (2, 5), (2,6),
(3, 1), (3, 2), (3, 3), (3,4), (3, 5), (3, 6),
(4, 1), (4, 2), (4,3), (4,4), (4, 5), (4,6),
(5, 1), (5, 2), (5,3), (5,4), (5, 5), (5, 6),
(6, 1), (6, 2), (6, 3), (6,4), (6, 5), (6,6)}
∴ n(S) = 36

i. Let A be the event that the sum of the digits on the upper faces is at least 10.
∴ A = {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)}
∴ n(A) = 6
∴ P(A) = \(\frac { n(A) }{ n(S) } \) = \(\frac { 6 }{ 36 } \)
∴ P(A) = \(\frac { 1 }{ 6 } \)

ii. Let B be the event that the sum of the digits on the upper faces is 33.
The sum of the digits on the upper faces can be maximum 12.
∴ Event B is an impossible event.
∴ B = { }
∴ n(B) = 0
∴ P(B) = \(\frac { n(B) }{ n(S) } \) = \(\frac { 0 }{ 36 } \)
∴ P(B) = 0

iii. Let C be the event that the digit on the first die is greater than the digit on the second die.
C = {(2, 1), (3, 1), (3,2), (4,1), (4,2), (4, 3), (5, 1), (5,2), (5,3), (5,4), (6,1), (6,2), (6, 3), (6, 4), (6, 5),
∴ n(C) = 15
∴ P(C) = \(\frac { n(c) }{ n(S) } \) = \(\frac { 15 }{ 36 } \)
∴ P(C) = \(\frac { 5 }{ 12 } \)
∴ P(A) = \(\frac { 1 }{ 6 } \) ; P(B) = 0; P(C) = \(\frac { 5 }{ 12 } \)

Question 3.
There are 15 tickets in a box, each bearing one of the numbers from 1 to 15. One ticket is drawn at random from the box. Find the probability of event that the ticket drawn:
i. shows an even number.
ii. shows a number which is a multiple of 5.
Solution:
Sample space,
S = {1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14, 15}
∴ n(S) = 15

i. Let A be the event that the ticket drawn shows an even number.
∴ A = {2, 4, 6, 8, 10, 12, 14}
∴ n(A) = 7
∴ P(A) = \(\frac { n(A) }{ n(S) } \)
∴ P(A) = \(\frac { 7 }{ 15 } \)

ii. Let B be the event that the ticket drawn shows a number which is a multiple of 5.
∴ B = {5, 10, 15}
∴ n(B) = 3
∴ P(B) = \(\frac { n(B) }{ n(S) } \) = \(\frac { 3 }{ 15 } \)
∴ P(B) = \(\frac { 1 }{ 5 } \)
∴ P(A) = \(\frac { 7 }{ 15 } \) ; P(B) = \(\frac { 1 }{ 5 } \)

Question 4.
A two digit number is formed with digits 2, 3, 5, 7, 9 without repetition. What is the probability that the number formed is
i. an odd number?
ii. a multiple of 5?
Solution:
Sample space
(S) = {23, 25, 27, 29,
32, 35, 37, 39,
52, 53, 57, 59,
72, 73, 75, 79,
92, 93, 95, 97}
∴ n(S) = 20
i. Let A be the event that the number formed is an odd number.
∴ A = {23, 25, 27, 29, 35, 37, 39, 53, 57, 59, 73, 75,79,93,95,97}
∴ n(A) = 16
∴ P(A) = \(\frac { n(A) }{ n(S) } \) = \(\frac { 16 }{ 20 } \)
∴ P(A) = \(\frac { 4 }{ 5 } \)

ii. Let B be the event that the number formed is a multiple of 5.
∴ B = {25,35,75,95}
∴ n(B) = 4
∴ P(B) = \(\frac { n(B) }{ n(S) } \) = \(\frac { 4 }{ 20 } \)
∴ P(B) = \(\frac { 1 }{ 5 } \)
∴ P(A) = \(\frac { 4 }{ 5 } \) ; P(B) = \(\frac { 1 }{ 5 } \)

Question 5.
A card is drawn at random from a pack of well shuffled 52 playing cards. Find the probability that the card drawn is
i. an ace.
ii. a spade.
Solution:
There are 52 playing cards.
∴ n(S) = 52
i. Let A be the event that the card drawn is an ace.
∴ n(A) = 4
∴ P(A) = \(\frac { n(A) }{ n(S) } \) = \(\frac { 4 }{ 52 } \)
∴ P(A) = \(\frac { 1 }{ 13 } \)

ii. Let B be the event that the card drawn is a spade.
∴ n(B) = 13
∴ P(B) = \(\frac { n(B) }{ n(S) } \) = \(\frac { 13 }{ 52 } \)
∴ P(B) = \(\frac { 1 }{ 4 } \)
∴ P(A) = \(\frac { 1 }{ 13 } \) ; P(B) = \(\frac { 1 }{ 4 } \)