Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Practice Set 6.3 8th Std Maths Answers Solutions Chapter 6 Factorisation of Algebraic Expressions.
Practice Set 6.3 8th Std Maths Answers Chapter 6 Factorisation of Algebraic Expressions
Question 1.
 Factorize
 i. y³ – 27
 ii. x³ – 64y³
 iii. 27m³ – 216n³
 iv. 125y³ – 1
 v. \(8 p^{3}-\frac{27}{p^{3}}\)
 vi. 343a³ – 512b³
 vii. 64x³ – 729y³
 viii. \(16 a^{3}-\frac{128}{b^{3}}\)
 Solution:
 i. y³ – 27
 = y³ – (3)³
 Here, a = y and b = 3
 ∴ y³ – 27 = (y – 3)[y² + y(3) + (3)2]
 …[∵ a³ – b³ = (a – b) (a² + ab + b²)]
 = (y – 3)(y² + 3y + 9)
ii. x³ – 64y³
 = x³ – (4y)³
 Here, a = x and b = 4y
 ∴ x³ – 64y³ = (x – 4y)[x² + x(4y) + (4y)²]
 …[∵ a³ – b³ = (a – b)(a² + ab + b²)]
 = (x – 4y)(x² + 4xy + 16y²)
iii. 27m³ – 216n³
 = 27 (m³ – 8n³)
 … [Taking out the common factor 27]
 = 27 [m³ – (2n)³]
 Here, a = m and b = 2n
 ∴ 27m³ – 216n³
 = 27 {(m – 2n) [m² + m(2n) + (2n)²]}
 ….[∵ a³ – b³ = (a – b) (a² + ab + b²)]
 = 27 (m – 2n)(m² + 2mn + 4n²)
iv. 125y³ – 1
 = (5y)³ – 1³
 Here, a = 5y and b = 1
 ∴ 125y³ – 1 = (5y – 1) [(5y)² + (5y)(1) + (1)²]
 …[∵ a³ – b³ = (a – b)(a² + ab + b²)]
 = (5y – 1) (25y² + 5y + 1)
v. \(8 p^{3}-\frac{27}{p^{3}}\)
 
vi. 343a³ – 512b³
 = (7a)³ – (8b)³
 Here, A = 7a and B = 8b
 ∴ 343a³ – 512b³
 = (7a – 8b) [(7a)² + (7a)(8b) + (8b)²]
 …[∵ A³ – B³ = (A – B)(A² + AB + B²)]
 = (7a – 8b) (49a² + 56ab + 64b²)
vii. 64x³ – 729y³
 = (4x)³ – (9y)³
 Here, a = 4x and b = 9y
 ∴ 64x³ – 729y³
 = (4x – 9y) [(4x)² + (4x) (9y) + (9y)²]
 …[∵ a³ – b³ = (a – b)(a² + ab + b²)]
 = (4x – 9y) (16x² + 36xy + 81y²)
viii. \(16 a^{3}-\frac{128}{b^{3}}\)
 
Question 2.
 Simplify:
 i. (x + y)³ – (x – y)³
 ii. (3a + 5b)³ – (3a – 5b)³
 iii. (a + b)³ – a³ – b³
 iv. p³ – (p + 1)³
 v. (3xy – 2ab)³ – (3xy + 2ab)³
 Solution:
 i. (x + y)³ – (x – y)³
 Here, a = x + y and b = x – y
 (x + y)³ – (x – y)³
 = [(x + y) – (x – y)] [(x + y)² + (x + y) (x – y) + (x – y)]
 …[a³ – b³ = (a – b)(a² + ab + b²)]
 = (x + y – x + y) [(x² + 2xy + y²) + (x² – y²) + (x² – 2xy + y²)]
 = 2y(x² + x² + x² + 2xy – 2xy + y² – y² + y²)
 = 2y (3x² + y²)
 = 6x²y + 2y³
ii. (3a + 5b)³ – (3a – 5b)³
 Here, A = 3a + 5b and B = 3a – 5b
 = [(3a + 5b) – (3a – 5b)] [(3a + 5b)² + (3a + 5b) (3a – 5b) + (3a – 5b)²]
 …[∵ A³ – B³ = (A – B)(A² + AB + B²)]
 = (3a + 5b – 3a + 5b) [(9a² + 30ab + 25b²) + (9a² – 25b²) + (9a² – 30ab + 25b²)]
 = 10b (9a² + 9a² + 9a² + 30ab – 30ab + 25b² – 25b² + 25b²)
 = 10b (27a² + 25b²)
 = 270a²b + 250b³
iii. (a + b)³ – a³ – b³
 = a³ + 3a²b + 3ab² + b³ – a³ – b³
 = 3a²b + 3ab²
iv. p³ – (p + 1)³
 = p³ – (p³ + 3p² + 3p + 1) …[∵ (a + b)³ = a³ + 3a²b + 3ab² + b³]
 = p³ – p³ – 3p² – 3p – 1
 = – 3p² – 3p – 1
v. (3xy – 2ab)³ – (3xy + 2ab)³
 Here, A = 3xy – 2ab and B = 3xy + 2ab
 ∴ (3xy – 2ab)³ – (3xy + 2ab)³
 = [(3xy – 2ab) – (3xy + 2ab)] [(3xy – 2ab)² + (3xy – 2ab) (3xy + 2ab) + (3xy + 2ab)²]
 …[∵ A³ – B³ = (A – B) (A² + AB + B²)]
 = (3xy – 2ab – 3xy – 2ab) [(9x²y² – 12xyab + 4a²b²) + (9x²y² – 4a²b²) + (9x²y² + 12xyab + 4a²b²)]
 = (- 4ab) (9x²y² + 9x²y² + 9x²y² – 12xyab + 12xyab + 4a²b² – 4a²b² + 4a²b²)
 = (- 4ab) (27 xy² + 4a²b²)
 = -108x²y²ab – 16a³b³

























































