Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 6 Differential Equations Ex 6.3 Questions and Answers.
Maharashtra State Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3
Question 1.
 In each of the following examples verify that the given expression is a solution of the corresponding differential equation.
 (i) xy = log y + c; \(\frac{d y}{d x}=\frac{y^{2}}{1-x y}\)
 Solution:
 xy = log y + c
 Differentiating w.r.t. x, we get
 
 Hence, xy = log y + c is a solution of the D.E.
 \(\frac{d y}{d x}=\frac{y^{2}}{1-x y^{\prime}}, x y \neq 1\)
(ii) y = (sin-1x)2 + c; (1 – x2) \(\frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=2\)
 Solution:
 y = (sin-1 x)2 + c …….(1)
 Differentiating w.r.t. x, we get
 
 Differentiating again w.r.t. x, we get
 
![]()
(iii) y = e-x + Ax + B; \(e^{x} \frac{d^{2} y}{d x^{2}}=1\)
 Solution:
 y = e-x + Ax + B
 Differentiating w.r.t. x, we get
 
 ∴ \(e^{x} \frac{d^{2} y}{d x^{2}}=1\)
 Hence, y = e-x + Ax + B is a solution of the D.E.
 \(e^{x} \frac{d^{2} y}{d x^{2}}=1\)
(iv) y = xm; \(x^{2} \frac{d^{2} y}{d x^{2}}-m x \frac{d y}{d x}+m y=0\)
 Solution:
 y = xm
 Differentiating twice w.r.t. x, we get
 
 This shows that y = xm is a solution of the D.E.
 \(x^{2} \frac{d^{2} y}{d x^{2}}-m x \frac{d y}{d x}+m y=0\)
(v) y = a + \(\frac{b}{x}\); \(x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=0\)
 Solution:
 y = a + \(\frac{b}{x}\)
 Differentiating w.r.t. x, we get
 
 Differentiating again w.r.t. x, we get
 
 Hence, y = a + \(\frac{b}{x}\) is a solution of the D.E.
 \(x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=0\)
![]()
(vi) y = eax; x \(\frac{d y}{d x}\) = y log y
 Solution:
 y = eax
 log y = log eax = ax log e
 log y = ax …….(1) ……..[∵ log e = 1]
 Differentiating w.r.t. x, we get
 \(\frac{1}{y} \cdot \frac{d y}{d x}\) = a × 1
 ∴ \(\frac{d y}{d x}\) = ay
 ∴ x \(\frac{d y}{d x}\) = (ax)y
 ∴ x \(\frac{d y}{d x}\) = y log y ………[By (1)]
 Hence, y = eax is a solution of the D.E.
 x \(\frac{d y}{d x}\) = y log y.
Question 2.
 Solve the following differential equations.
 (i) \(\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}\)
 Solution:
 
(ii) log(\(\frac{d y}{d x}\)) = 2x + 3y
 Solution:
 
(iii) y – x \(\frac{d y}{d x}\) = 0
 Solution:
 y – x \(\frac{d y}{d x}\) = 0
 ∴ x \(\frac{d y}{d x}\) = y
 ∴ \(\frac{1}{x} d x=\frac{1}{y} d y\)
 Integrating both sides, we get
 \(\int \frac{1}{x} d x=\int \frac{1}{y} d y\)
 ∴ log |x| = log |y| + log c
 ∴ log |x| = log |cy|
 ∴ x = cy
 This is the general solution.
![]()
(iv) sec2x . tan y dx + sec2y . tan x dy = 0
 Solution:
 sec2x . tan y dx + sec2y . tan x dy = 0
 ∴ \(\frac{\sec ^{2} x}{\tan x} d x+\frac{\sec ^{2} y}{\tan y} d y=0\)
 Integrating both sides, we get
 \(\int \frac{\sec ^{2} x}{\tan x} d x+\int \frac{\sec ^{2} y}{\tan y} d y=c_{1}\)
 Each of these integrals is of the type
 \(\int \frac{f^{\prime}(x)}{f(x)} d x\) = log |f(x)| + c
 ∴ the general solution is
 ∴ log|tan x| + log|tan y | = log c, where c1 = log c
 ∴ log |tan x . tan y| = log c
 ∴ tan x . tan y = c
 This is the general solution.
(v) cos x . cos y dy – sin x . sin y dx = 0
 Solution:
 cos x . cos y dy – sin x . sin y dx = 0
 \(\frac{\cos y}{\sin y} d y-\frac{\sin x}{\cos x} d x=0\)
 Integrating both sides, we get
 ∫cot y dy – ∫tan x dx = c1
 ∴ log|sin y| – [-log|cos x|] = log c, where c1 = log c
 ∴ log |sin y| + log|cos x| = log c
 ∴ log|sin y . cos x| = log c
 ∴ sin y . cos x = c
 This is the general solution.
(vi) \(\frac{d y}{d x}\) = -k, where k is a constant.
 Solution:
 \(\frac{d y}{d x}\) = -k
 ∴ dy = -k dx
 Integrating both sides, we get
 ∫dy = -k∫dx
 ∴ y = -kx + c
 This is the general solution.
![]()
(vii) \(\frac{\cos ^{2} y}{x} d y+\frac{\cos ^{2} x}{y} d x=0\)
 Solution:
 \(\frac{\cos ^{2} y}{x} d y+\frac{\cos ^{2} x}{y} d x=0\)
 ∴ y cos2y dy + x cos2x dx = 0
 ∴ \(x\left(\frac{1+\cos 2 x}{2}\right) d x+y\left(1+\frac{\cos 2 y}{2}\right) d y=0\)
 ∴ x(1 + cos 2x) dx + y(1 + cos 2y) dy = 0
 ∴ x dx + x cos 2x dx + y dy+ y cos 2y dy = 0
 Integrating both sides, we get
 ∫x dx + ∫y dy + ∫x cos 2x dx + ∫y cos 2y dy = c1 ……..(1)
 Using integration by parts
 
 Multiplying throughout by 4, this becomes
 2x2 + 2y2 + 2x sin 2x + cos 2x + 2y sin 2y + cos 2y = 4c1
 ∴ 2(x2 + y2) + 2(x sin 2x + y sin 2y) + cos 2y + cos 2x + c = 0, where c = -4c1
 This is the general solution.
(viii) \(y^{3}-\frac{d y}{d x}=x^{2} \frac{d y}{d x}\)
 Solution:
 
(ix) 2ex+2y dx – 3 dy = 0
 Solution:
 
![]()
(x) \(\frac{d y}{d x}\) = ex+y + x2 ey
 Solution:
 
 ∴ 3ex + 3e-y + x3 = -3c1
 ∴ 3ex + 3e-y + x3 = c, where c = -3c1
 This is the general solution.
Question 3.
 For each of the following differential equations, find the particular solution satisfying the given condition:
 (i) 3ex tan y dx + (1 + ex) sec2y dy = 0, when x = 0, y = π
 Solution:
 3ex tan y dx + (1 + ex) sec2y dy = 0
 
(ii) (x – y2x) dx – (y + x2y) dy = 0, when x = 2, y = 0
 Solution:
 (x – y2x) dx – (y + x2y) dy = 0
 ∴ x(1 – y2) dx – y(1 + x2) dy = 0
 
 When x = 2, y = 0, we have
 (1 + 4)(1 – 0) = c
 ∴ c = 5
 ∴ the particular solution is (1 + x2)(1 – y2) = 5.
(iii) y(1 + log x) \(\frac{d x}{d y}\) – x log x = 0, y = e2, when x = e
 Solution:
 y(1 + log x) \(\frac{d x}{d y}\) – x log x = 0
 
 
![]()
(iv) (ey + 1) cos x + ey sin x \(\frac{d y}{d x}\) = 0, when x = \(\frac{\pi}{6}\), y = 0
 Solution:
 (ey + 1) cos x + ey sin x \(\frac{d y}{d x}\) = 0
 
 \(\int \frac{f^{\prime}(x)}{f(x)} d x\) = log|f(x)| + c
 ∴ from (1), the general solution is
 log|sin x| + log|ey + 1| = log c, where c1 = log c
 ∴ log|sin x . (ey + 1)| = log c
 ∴ sin x . (ey + 1) = c
 When x = \(\frac{\pi}{4}\), y = 0, we get
 \(\left(\sin \frac{\pi}{4}\right)\left(e^{0}+1\right)=c\)
 ∴ c = \(\frac{1}{\sqrt{2}}\)(1 + 1) = √2
 ∴ the particular solution is sin x . (ey + 1) = √2
(v) (x + 1) \(\frac{d y}{d x}\) – 1 = 2e-y, y = 0, when x = 1
 Solution:
 
 This is the general solution.
 Now, y = 0, when x = 1
 ∴ 2 + e0 = c(1 + 1)
 ∴ 3 = 2c
 ∴ c = \(\frac{3}{2}\)
 ∴ the particular solution is 2 + ey = \(\frac{3}{2}\) (x + 1)
 ∴ 2(2 + ey) = 3(x + 1).
![]()
(vi) cos(\(\frac{d y}{d x}\)) = a, a ∈ R, y (0) = 2
 Solution:
 cos(\(\frac{d y}{d x}\)) = a
 ∴ \(\frac{d y}{d x}\) = cos-1 a
 ∴ dy = (cos-1 a) dx
 Integrating both sides, we get
 ∫dy = (cos-1 a) ∫dx
 ∴ y = (cos-1 a) x + c
 ∴ y = x cos-1 a + c
 This is the general solution.
 Now, y(0) = 2, i.e. y = 2,
 when x = 0, 2 = 0 + c
 ∴ c = 2
 ∴ the particular solution is
 ∴ y = x cos-1 a + 2
 ∴ y – 2 = x cos-1 a
 ∴ \(\frac{y-2}{x}\) = cos-1a
 ∴ cos(\(\frac{y-2}{x}\)) = a
Question 4.
 Reduce each of the following differential equations to the variable separable form and hence solve:
 (i) \(\frac{d y}{d x}\) = cos(x + y)
 Solution:
 
 
![]()
(ii) (x – y)2 \(\frac{d y}{d x}\) = a2
 Solution:
 
 
(iii) x + y \(\frac{d y}{d x}\) = sec(x2 + y2)
 Solution:
 
 Integrating both sides, we get
 ∫cos u du = 2 ∫dx
 ∴ sin u = 2x + c
 ∴ sin(x2 + y2) = 2x + c
 This is the general solution.
(iv) cos2(x – 2y) = 1 – 2 \(\frac{d y}{d x}\)
 Solution:
 
 Integrating both sides, we get
 ∫dx = ∫sec2u du
 ∴ x = tan u + c
 ∴ x = tan(x – 2y) + c
 This is the general solution.
![]()
(v) (2x – 2y + 3) dx – (x – y + 1) dy = 0, when x = 0, y = 1
 Solution:
 (2x – 2y + 3) dx – (x – y + 1) dy = 0
 ∴ (x – y + 1) dy = (2x – 2y + 3) dx
 ∴ \(\frac{d y}{d x}=\frac{2(x-y)+3}{(x-y)+1}\) ………(1)
 Put x – y = u, Then \(1-\frac{d y}{d x}=\frac{d u}{d x}\)
 
 ∴ u – log|u + 2| = -x + c
 ∴ x – y – log|x – y + 2| = -x + c
 ∴ (2x – y) – log|x – y + 2| = c
 This is the general solution.
 Now, y = 1, when x = 0.
 ∴ (0 – 1) – log|0 – 1 + 2| = c
 ∴ -1 – o = c
 ∴ c = -1
 ∴ the particular solution is
 (2x – y) – log|x – y + 2| = -1
 ∴ (2x – y) – log|x – y + 2| + 1 = 0