Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 3 Indefinite Integration Ex 3.2(A) Questions and Answers.
Maharashtra State Board 12th Maths Solutions Chapter 3 Indefinite Integration Ex 3.2(A)
I. Integrate the following functions w.r.t. x:
Question 1.
 \(\frac{(\log x)^{n}}{x}\)
 Solution:
 
Question 2.
 \(\frac{\left(\sin ^{-1} x\right)^{\frac{3}{2}}}{\sqrt{1-x^{2}}}\)
 Solution:
 Let I = \(\int \frac{\left(\sin ^{-1} x\right)^{\frac{3}{2}}}{\sqrt{1-x^{2}}} d x\)
 
![]()
Question 3.
 \(\frac{1+x}{x \cdot \sin (x+\log x)}\)
 Solution:
 
Question 4.
 \(\frac{x \cdot \sec ^{2}\left(x^{2}\right)}{\sqrt{\tan ^{3}\left(x^{2}\right)}}\)
 Solution:
 
Question 5.
 \(\frac{e^{3 x}}{e^{3 x}+1}\)
 Solution:
 
 
Question 6.
 \(\frac{\left(x^{2}+2\right)}{\left(x^{2}+1\right)} \cdot a^{x+\tan ^{-1} x}\)
 Solution:
 
Question 7.
 \(\frac{e^{x} \cdot \log \left(\sin e^{x}\right)}{\tan \left(e^{x}\right)}\)
 Solution:
 
Question 8.
 \(\frac{e^{2 x}+1}{e^{2 x}-1}\)
 Solution:
 
 
![]()
Question 9.
 sin4x . cos3x
 Solution:
 
Question 10.
 \(\frac{1}{4 x+5 x^{-11}}\)
 Solution:
 
Question 11.
 x9 . sec2(x10)
 Solution:
 
Question 12.
 \(e^{3 \log x} \cdot\left(x^{4}+1\right)^{-1}\)
 Solution:
 
Question 13.
 \(\frac{\sqrt{\tan x}}{\sin x \cdot \cos x}\)
 Solution:
 Let I = \(\int \frac{\sqrt{\tan x}}{\sin x \cdot \cos x} d x\)
 Dividing numerator and denominator by cos2x, we get
 
Question 14.
 \(\frac{(x-1)^{2}}{\left(x^{2}+1\right)^{2}}\)
 Solution:
 
 
![]()
Question 15.
 \(\frac{2 \sin x \cos x}{3 \cos ^{2} x+4 \sin ^{2} x}\)
 Solution:
 
Question 16.
 \(\frac{1}{\sqrt{x}+\sqrt{x^{3}}}\)
 Solution:
 
 
Question 17.
 \(\frac{10 x^{9}+10^{x} \cdot \log 10}{10^{x}+x^{10}}\)
 Solution:
 
Question 18.
 \(\frac{x^{n-1}}{\sqrt{1+4 x^{n}}}\)
 Solution:
 
Question 19.
 (2x + 1) \(\sqrt{x+2}\)
 Solution:
 
Question 20.
 \(x^{5} \sqrt{a^{2}+x^{2}}\)
 Solution:
 
Question 21.
 \((5-3 x)(2-3 x)^{-\frac{1}{2}}\)
 Solution:
 
Question 22.
 \(\frac{7+4 x+5 x^{2}}{(2 x+3)^{\frac{3}{2}}}\)
 Solution:
 
 
![]()
Question 23.
 \(\frac{x^{2}}{\sqrt{9-x^{6}}}\)
 Solution:
 
 
Question 24.
 \(\frac{1}{x\left(x^{3}-1\right)}\)
 Solution:
 
 
 
Question 25.
 \(\frac{1}{x \cdot \log x \cdot \log (\log x)}\)
 Solution:
 
II. Integrate the following functions w.r.t x:
Question 1.
 \(\frac{\cos 3 x-\cos 4 x}{\sin 3 x+\sin 4 x}\)
 Solution:
 
Question 2.
 \(\frac{\cos x}{\sin (x-a)}\)
 Solution:
 
![]()
Question 3.
 \(\frac{\sin (x-a)}{\cos (x+b)}\)
 Solution:
 
Question 4.
 \(\frac{1}{\sin x \cdot \cos x+2 \cos ^{2} x}\)
 Solution:
 Let I = \(\int \frac{1}{\sin x \cdot \cos x+2 \cos ^{2} x} d x\)
 Dividing numerator and denominator of cos2x, we get
 
Question 5.
 \(\frac{\sin x+2 \cos x}{3 \sin x+4 \cos x}\)
 Solution:
 Let I = \(\int \frac{\sin x+2 \cos x}{3 \sin x+4 \cos x} d x\)
 Put, Numerator = A (Denominator) + B [\(\frac{d}{d x}\) (Denominator)]
 ∴ sin x+ 2 cos x = A(3 sin x + 4 cos x) + B [\(\frac{d}{d x}\) (3 sin x + 4 cos x)]
 = A(3 sin x + 4 cos x) + B (3 cos x – 4 sin x)
 ∴ sin x + 2 cos x = (3A – 4B) sin x + (4A + 3B) cos x
 Equating the coefficients of sin x and cos x on both the sides, we get
 3A – 4B = 1 …… (1)
 and 4A + 3B = 2 …… (2)
 Multiplying equation (1) by 3 and equation (2) by 4, we get
 9A – 12B = 3
 16A + 12B = 8
 On adding, we get
 
Question 6.
 \(\frac{1}{2+3 \tan x}\)
 Solution:
 Let I = \(\int \frac{1}{2+3 \tan x} d x\)
 
 Numerator = A (Denominator) + B [\(\frac{d}{d x}\) (Denominator)]
 ∴ cos x = A(2 cos x + 3 sin x) + B [\(\frac{d}{d x}\) (2 cos x + 3 sin x)]
 = A (2 cos x + 3 sin x) + B (-2 sin x + 3 cos x)
 ∴ cos x = (2A + 3B) cos x + (3A – 2B) sin x
 Equating the coefficients of cosx and sinx on both the sides, we get
 2A + 3B = 1 …… (1)
 and 3A – 2B = 0 ……. (2)
 Multiplying equation (1) by 2 and equation (2) by 3, we get
 4A + 6B = 2
 9A – 6B = 0
 On adding, we get
 
![]()
Question 7.
 \(\frac{4 e^{x}-25}{2 e^{x}-5}\)
 Solution:
 Let I = \(\int \frac{4 e^{x}-25}{2 e^{x}-5} d x\)
 Put, Numerator = A (Denominator) + B [\(\frac{d}{d x}\) (Denominator)]
 ∴ 4ex – 25 = A(2ex – 5) + B[\(\frac{d}{d x}\) (2ex – 5)]
 = A(2ex – 5) + B(2ex – 0)
 ∴ 4ex – 25 = (2A + 2B) ex – 5A
 Equating the coefficient of ex and constant on both sides, we get
 2A + 2B = 4 …….(1)
 and 5A = 25
 ∴ A = 5
 from (1), 2(5) + 2B = 4
 ∴ 2B = -6
 ∴ B = -3
 
Question 8.
 \(\frac{20+12 e^{x}}{3 e^{x}+4}\)
 Solution:
 
 
Question 9.
 \(\frac{3 e^{2 x}+5}{4 e^{2 x}-5}\)
 Solution:
 Let I = \(\int \frac{3 e^{2 x}+5}{4 e^{2 x}-5} d x\)
 Put, Numerator = A (Denominator) + B [\(\frac{d}{d x}\) (Denominator)]
 ∴ 3e2x + 5 = A(4e2x – 5) + B [\(\frac{d}{d x}\) (4e2x – 5)]
 = A(4e2x – 5) + B(4 . e2x × 2 – 0)
 ∴ 3e2x + 5 = (4A + 8B) e2x – 5A
 Equating the coefficient of e2x and constant on both sides, we get
 4A + 8B = 3 …….. (1)
 and -5A = 5
 ∴ A = -1
 ∴ from (1), 4(-1) + 8B = 3
 ∴ 8B = 7
 ∴ B = \(\frac{7}{8}\)
 
Question 10.
 cos8 x . cot x
 Solution:
 
Question 11.
 tan5x
 Solution:
 Let I = ∫ tan5x dx
 
Question 12.
 cos7x
 Solution:
 
![]()
Question 13.
 tan 3x tan 2x tan x
 Solution:
 Let I = ∫ tan 3x tan 2x tan x dx
 Consider tan 3x = tan (2x + x) = \(\frac{\tan 2 x+\tan x}{1-\tan 2 x \tan x}\)
 tan 3x (1 – tan 2x tan x) = tan 2x + tan x
 tan 3x – tan 3x tan 2x tan x = tan 2x + tan x
 tan 3x – tan 2x – tan x = tan 3x tan 2x tan x
 I = ∫(tan 3x – tan 2x – tan x) dx
 = ∫tan3x dx – ∫tan 2x dx – ∫tan x dx
 = \(\frac{1}{3}\) log | sec 3x| – \(\frac{1}{2}\) log |sec 2x| – log |sec x| + c.
Question 14.
 sin5x cos8x
 Solution:
 
Question 15.
 \(3^{\cos ^{2} x \cdot} \sin 2 x\)
 Solution:
 
Question 16.
 \(\frac{\sin 6 x}{\sin 10 x \sin 4 x}\)
 Solution:
 
![]()
Question 17.
 \(\frac{\sin x \cos ^{3} x}{1+\cos ^{2} x}\)
 Solution:
 
 