Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 2 Matrices Ex 2.2 Questions and Answers.
Maharashtra State Board 12th Maths Solutions Chapter 2 Matrices Ex 2.2
Question 1.
 Find the co-factors of the elements of the following matrices
 (i) \(\left[\begin{array}{cc}
 -1 & 2 \\
 -3 & 4
 \end{array}\right]\)
 Solution:
 Let A = \(\left[\begin{array}{cc}
 -1 & 2 \\
 -3 & 4
 \end{array}\right]\)
 Here, a11 = -11, M11 = 4
 ∴ A11 = (-1)1+1(4) = 4
 a12 = 2, M12 = -3
 ∴ A12 = (-1)1+2(- 3) = 3
 a21 = – 3, M21 = -2
 ∴ A21 = (- 1)2+1(2) = -2
 a22 = 4, M22 = -1
 ∴ A22 = (-1)2+2(-1) = -1.
(ii) \(\left[\begin{array}{ccc}
 1 & -1 & 2 \\
 -2 & 3 & 5 \\
 -2 & 0 & -1
 \end{array}\right]\)
 Solution:
 Let A = \(\left[\begin{array}{ccc}
 1 & -1 & 2 \\
 -2 & 3 & 5 \\
 -2 & 0 & -1
 \end{array}\right]\)
 The co-factor of aij is given by Aij = (-1)i+jMij
 
 
![]()
Question 2.
 Find the matrix of co-factors for the following matrices
 (i) \(\left[\begin{array}{rr}
 1 & 3 \\
 4 & -1
 \end{array}\right]\)
 Solution:
 Let A = \(\left[\begin{array}{rr}
 1 & 3 \\
 4 & -1
 \end{array}\right]\)
 Here, a11 = 1, M11 = -1
 ∴ A11 = (-1)1+1(-1) = -1
 a12 = 3, M12 = 4
 ∴ A12 = (-1)1+2(4) = -4
 a21 = 4, M21 = 3
 ∴ A21 = (-1)2+1(3) = -3
 a22 = -1, M22 = 1
 ∴ A22 = (-1)2+1(1) = 1
 ∴ the co-factor matrix = \(\left[\begin{array}{ll}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
 \end{array}\right]\)
 = \(\left(\begin{array}{rr}
 -1 & -4 \\
 -3 & 1
 \end{array}\right)\)
(ii) \(\left[\begin{array}{rrr}
 1 & 0 & 2 \\
 -2 & 1 & 3 \\
 0 & 3 & -5
 \end{array}\right]\)
 Solution:
 Let A = \(\left[\begin{array}{rrr}
 1 & 0 & 2 \\
 -2 & 1 & 3 \\
 0 & 3 & -5
 \end{array}\right]\)
 
 
 
 A11 = -14, A12 = -10, A13 = -6,
 A21 = 6, A22 = -5, A23 = -3,
 A31 = -2, A32 = -7, A33 = 1.
 ∴ the co-factor matrix
 = \(\left[\begin{array}{lll}
 A_{11} & A_{12} & A_{13} \\
 A_{21} & A_{22} & A_{23} \\
 A_{31} & A_{32} & A_{33}
 \end{array}\right]\) = \(\left[\begin{array}{rrr}
 -14 & -10 & -6 \\
 6 & -5 & -3 \\
 -2 & -7 & 1
 \end{array}\right]\)
![]()
Question 3.
 Find the adjoint of the following matrices.
 (i) \(\left[\begin{array}{cc}
 2 & -3 \\
 3 & 5
 \end{array}\right]\)
 Solution:
 Let A = \(\left[\begin{array}{cc}
 2 & -3 \\
 3 & 5
 \end{array}\right]\)
 Here, a11 = 2, M11= 5
 ∴ A11 = (-1)1+1(5) = 5
 a12 = -3, M12 = 3
 ∴ A12 = (-1)1+2(3) = -3
 a21 = 3, M21 = -3
 ∴ A A21 = (-1)2+1(-3) = 3
 a22 = 5, M22 = 2
 ∴ A22 = (-1)2+1 = 2
 ∴ the co-factor matrix = \(\left[\begin{array}{ll}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
 \end{array}\right]\)
 = \(\left[\begin{array}{rr}
 5 & -3 \\
 3 & 2
 \end{array}\right]\)
 ∴ adj A = \(\left(\begin{array}{rr}
 5 & 3 \\
 -3 & 2
 \end{array}\right)\)
![]()
(ii) \(\left[\begin{array}{ccc}
 1 & -1 & 2 \\
 -2 & 3 & 5 \\
 -2 & 0 & -1
 \end{array}\right]\)
 Solution:
 
 
 A11 = -3, A12 = -12, A13 = 6,
 A21 = -1, A22 = 3, A23 = 2,
 A31 = -11, A32 = -9, A33 = 1
 ∴ the co-factor matrix = \(\left[\begin{array}{lll}
 \mathrm{A}_{11} & \mathrm{~A}_{12} & \mathrm{~A}_{15} \\
 \mathrm{~A}_{21} & \mathrm{~A}_{22} & \mathrm{~A}_{23} \\
 \mathrm{~A}_{31} & \mathrm{~A}_{32} & \mathrm{~A}_{33}
 \end{array}\right]\)
 = \(\left[\begin{array}{rrr}
 -3 & -12 & 6 \\
 -1 & 3 & 2 \\
 -11 & -9 & 1
 \end{array}\right]\)
 ∴ adj A = \(\left[\begin{array}{rrr}
 -3 & -1 & -11 \\
 -12 & 3 & -9 \\
 6 & 2 & 1
 \end{array}\right]\)
Question 4.
 If A = \(\left[\begin{array}{ccc}
 1 & -1 & 2 \\
 3 & 0 & -2 \\
 1 & 0 & 3
 \end{array}\right]\), verify that A (adj A) = (adj A) A = | A | ∙ I
 Solution:
 A = \(\left[\begin{array}{ccc}
 1 & -1 & 2 \\
 3 & 0 & -2 \\
 1 & 0 & 3
 \end{array}\right]\)
 
 
 
 
 From (1), (2) and (3), we get,
 A(adj A) = (adj A)A = |A|∙I.
 Note: This relation is valid for any non-singular matrix A.
![]()
Question 5.
 Find the inverse of the following matrices by the adjoint method
 (i) \(\left[\begin{array}{ll}
 -1 & 5 \\
 -3 & 2
 \end{array}\right]\)
 Solution:
 Let A = \(\left[\begin{array}{ll}
 -1 & 5 \\
 -3 & 2
 \end{array}\right]\)
 ∴ |A| = \(\left|\begin{array}{ll}
 -1 & 5 \\
 -3 & 2
 \end{array}\right|\) = -2 + 15 = 13 ≠ 0
 ∴ A-1 exists.
 First we have to find the co-factor matrix
 = [Aij]2×2, where Aij = (-1)i+jMij
 Now, A11 = (-1)1+1M11 = 2
 A12 = (-1)1+2M12 = -(-3) = 3
 A21 = (-1)2+1M21 = -5
 A22 = (-1)2+2M22 = -1
 Hence, the co-factor matrix
 
(ii) \(\left[\begin{array}{cc}
 2 & -2 \\
 4 & 3
 \end{array}\right]\)
 Solution:
 Let A = \(\left[\begin{array}{cc}
 2 & -2 \\
 4 & 3
 \end{array}\right]\)
 |A| = \(\) = 6 + 8 = 14 ≠ 0
 ∴ A-1 exist
 First we have to find the co-factor matrix
 = [Aij] 2×2 where Aij = (-1)i+jMij
 Now, A11 = (-1)1+1M11 = 3
 A12 = (-1)1+2M = -4
 A21 = (-2)2+1M21 = (-2) = 2
 A22 = (-1)2+2M22 = 2
 Hence the co-factor matrix
 = \(\left[\begin{array}{ll}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
 \end{array}\right]\) = \(\left[\begin{array}{cc}
 3 & -4 \\
 2 & 2
 \end{array}\right]\)
 ∴ adj A = \(\left[\begin{array}{cc}
 3 & 2 \\
 -4 & 2
 \end{array}\right]\)
 ∴ A-1 = \(\frac{1}{|\mathrm{~A}|}\) (adj A) = \(\frac{1}{14}\left(\begin{array}{cc}
 3 & 2 \\
 -4 & 2
 \end{array}\right)\)
![]()
(iii) \(\left[\begin{array}{ccc}
 1 & 0 & 0 \\
 3 & 3 & 0 \\
 5 & 2 & -1
 \end{array}\right]\)
 Solution:
 Let A = \(\left[\begin{array}{ccc}
 1 & 0 & 0 \\
 3 & 3 & 0 \\
 5 & 2 & -1
 \end{array}\right]\)
 
 
 
 ∴ A-1 = \(\frac{1}{3}\left[\begin{array}{rrr}
 3 & 0 & 0 \\
 -3 & 1 & 0 \\
 9 & 2 & -3
 \end{array}\right]\)
(iv) \(\left[\begin{array}{lll}
 1 & 2 & 3 \\
 0 & 2 & 4 \\
 0 & 0 & 5
 \end{array}\right]\)
 Solution:
 Let A = \(\left[\begin{array}{lll}
 1 & 2 & 3 \\
 0 & 2 & 4 \\
 0 & 0 & 5
 \end{array}\right]\)
 ∴ |A| = \(\left[\begin{array}{lll}
 1 & 2 & 3 \\
 0 & 2 & 4 \\
 0 & 0 & 5
 \end{array}\right]\)
 = 1(10 – 0) – 0 + 0
 = 1(10) – 0 + 0
 = 10 ≠ 0
 ∴ A-1 exists.
 First we have to find the co-factor matrix
 
 
 ∴ A-1 = \(\frac{1}{|\mathrm{~A}|}\) (adj A)
 = \(\frac{1}{10}\left(\begin{array}{rrr}
 10 & -10 & 2 \\
 0 & 5 & -4 \\
 0 & 0 & 2
 \end{array}\right)\)
 ∴ A-1 = \(\frac{1}{10}\left(\begin{array}{rrr}
 10 & -10 & 2 \\
 0 & 5 & -4 \\
 0 & 0 & 2
 \end{array}\right)\)
![]()
Question 6.
 Find the inverse of the following matrices
 (i) \(\left[\begin{array}{cc}
 1 & 2 \\
 2 & -1
 \end{array}\right]\)
 Solution:
 Let A = \(\left[\begin{array}{cc}
 1 & 2 \\
 2 & -1
 \end{array}\right]\)
 
 
 
(ii) \(\left[\begin{array}{cc}
 2 & -3 \\
 -1 & 2
 \end{array}\right]\)
 Solution:
 Let A = \(\left[\begin{array}{cc}
 2 & -3 \\
 -1 & 2
 \end{array}\right]\)
 
 ∴ A-1 = \(\left(\begin{array}{ll}
 2 & 3 \\
 1 & 2
 \end{array}\right)\)
![]()
(iii) \(\left[\begin{array}{lll}
 0 & 1 & 2 \\
 1 & 2 & 3 \\
 3 & 1 & 1
 \end{array}\right]\)
 Solution:
 Let A = \(\left[\begin{array}{lll}
 0 & 1 & 2 \\
 1 & 2 & 3 \\
 3 & 1 & 1
 \end{array}\right]\)
 
 
 
(iv) \(\left[\begin{array}{ccc}
 2 & 0 & -1 \\
 5 & 1 & 0 \\
 0 & 1 & 3
 \end{array}\right]\)
 Solution:
 Let A = \(\left[\begin{array}{ccc}
 2 & 0 & -1 \\
 5 & 1 & 0 \\
 0 & 1 & 3
 \end{array}\right]\)
 
 
 