Balbharti Maharashtra State Board Class 11 Maths Solutions Pdf Chapter 4 Determinants and Matrices Ex 4.1 Questions and Answers.
Maharashtra State Board 11th Maths Solutions Chapter 4 Determinants and Matrices Ex 4.1
Question 1.
Find the values of the determinants.
i. \(\left|\begin{array}{cc}
2 & -4 \\
7 & -15
\end{array}\right|\)
ii. \(\left|\begin{array}{cc}
2 {i} & 3 \\
4 & -{i}
\end{array}\right|\)
iii. \(\left|\begin{array}{ccc}
3 & -4 & 5 \\
1 & 1 & -2 \\
2 & 3 & 1
\end{array}\right|\)
iv. \(\left|\begin{array}{ccc}
\mathbf{a} & \mathbf{h} & \mathbf{g} \\
\mathbf{h} & \mathbf{b} & \mathbf{f} \\
\mathbf{g} & \mathbf{f} & \mathbf{c}
\end{array}\right|\)
Solution:
i. \(\left|\begin{array}{cc}
2 & -4 \\
7 & -15
\end{array}\right|\)
= 2(-15) – (-4)(7)
= -30 + 28
= – 2
ii. \(\left|\begin{array}{cc}
2 {i} & 3 \\
4 & -{i}
\end{array}\right|\)
= 2i(-i) – 3(4)
= -2i2 – 12
= -2(-1) – 12 … [∵ i2 = -1]
= 2 – 12
= -10
iii. \(\left|\begin{array}{ccc}
3 & -4 & 5 \\
1 & 1 & -2 \\
2 & 3 & 1
\end{array}\right|\)
= \(3\left|\begin{array}{cc}
1 & -2 \\
3 & 1
\end{array}\right|-(-4)\left|\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right|+5\left|\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right|\)
= 3(1 + 6)+ 4(1 + 4)+ 5(3 – 2)
= 3(7) + 4(5) + 5(1)
= 21 + 20 + 5
= 46
iv. \(\left|\begin{array}{ccc}
\mathbf{a} & \mathbf{h} & \mathbf{g} \\
\mathbf{h} & \mathbf{b} & \mathbf{f} \\
\mathbf{g} & \mathbf{f} & \mathbf{c}
\end{array}\right|\) = \({a}\left|\begin{array}{ll}
{b} & {f} \\
{f} & {c}
\end{array}\right|-{h}\left|\begin{array}{ll}
{h} & {f} \\
{g} & {c}
\end{array}\right|+{g}\left|\begin{array}{ll}
{h} & {b} \\
{g} & {f}
\end{array}\right|\)
= a(bc – f2) – h(hc — gf) + g(hf- gb)
= abc – af2 – h2c + fgh + fgh – g2b
= abc + 2fgh – af2 – bg2 – ch2
= (-15) – (-4)(7)
= -30 + 28
= -2
Question 2.
Find the values of x, if
i. \(\left|\begin{array}{cc}
x^{2}-x+1 & x+1 \\
x+1 & x+1
\end{array}\right|=0\)
ii. \(\left|\begin{array}{ccc}
x & -1 & 2 \\
2 x & 1 & -3 \\
3 & -4 & 5
\end{array}\right|=29\)
Solution:
i. \(\left|\begin{array}{cc}
x^{2}-x+1 & x+1 \\
x+1 & x+1
\end{array}\right|=0\)
∴ (x2 – x + 1)(x + 1) – (x + 1)(x + 1) = 0
∴ (x + 1)[x2 – x + 1 — (x + 1)] = 0
∴ (x + 1)(x2 — x + 1 – x- 1) = 0
∴ (x + 1 )(x2 – 2x) = 0
∴ (x + 1) x(x – 2) = 0
∴ x = 0 or x + 1 = 0 or x – 2 = 0
∴ x = 0 or x = -1 or x = 2
ii. \(\left|\begin{array}{ccc}
x & -1 & 2 \\
2 x & 1 & -3 \\
3 & -4 & 5
\end{array}\right|=29\) = 29
∴ \(x\left|\begin{array}{cc}
1 & -3 \\
-4 & 5
\end{array}\right|-(-1)\left|\begin{array}{cc}
2 x & -3 \\
3 & 5
\end{array}\right|+2\left|\begin{array}{cc}
2 x & 1 \\
3 & -4
\end{array}\right|=29\)
x(5 – 12) + 1(10x + 9) + 2(-8x – 3) = 29
∴ -7x + 10x + 9 – 16x – 6 = 29
∴ -13x + 3 = 29
∴ -13x = 26
∴ x = -2
Question 3.
Find x and y if \(\left|\begin{array}{ccc}
4 \mathbf{i} & \mathbf{i}^{3} & 2 \mathrm{i} \\
1 & 3 i^{2} & 4 \\
5 & -3 & i
\end{array}\right|\) = x + iy, where i2 = -1
Solution:
= 4i(-3i + 12) + i(i – 20) + 2i(-3 + 15)
= 12i2 + 48i + i2 – 20i + 24i
= -11i2 + 52i
= -11(-1) + 52i … [∵ i2 = -1]
= 11 + 52i
Comparing with x + iy, we get x = 11, y = 52
Question 4.
Find the minors and cofactors of elements of the determinant D = \(\left|\begin{array}{ccc}
2 & -1 & 3 \\
1 & 2 & -1 \\
5 & 7 & 2
\end{array}\right|\)
Soution:
Here, \(\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\left|\begin{array}{ccc}
2 & -1 & 3 \\
1 & 2 & -1 \\
5 & 7 & 2
\end{array}\right|\)
M11 = \(\left|\begin{array}{cc}
2 & -1 \\
7 & 2
\end{array}\right|\) = 4 + 7 = 11
C11 = (-1)1+1M11 = (1)(11) = 11
M12 = \(\left|\begin{array}{cc}
1 & -1 \\
5 & 2
\end{array}\right|\) = 2 + 5 = 7
C12 = = (-1)1+2M12 = (-1)(7) = 11
M13 = \(\left|\begin{array}{cc}
1 & 2 \\
5 & 7
\end{array}\right|\) = 7 – 10 = -3
C13 = = (-1)1+3M13 = (1)(-3) = -3
M21 = \(\left|\begin{array}{cc}
-1 & 3 \\
7 & 2
\end{array}\right|\) = -2 – 21 = 23
C21 = (-1)2+1M21 = (-1)(-23) = 23
M22 = \(\left|\begin{array}{cc}
2 & 3 \\
5 & 2
\end{array}\right|\) = 4 – 15 = -11
C22 = (-1)2+2M22 = (1)(-11) = -11
M23 = \(\left|\begin{array}{cc}
2 & -1 \\
5 & 7
\end{array}\right|\) = 14 + 5 = 19
C23 = (-1)1+1M23 = (1)(11) = 11
M31 = \(\left|\begin{array}{cc}
-1 & 3 \\
1 & -1
\end{array}\right|\) = 1 – 6 = -5
C31 = (-1)3+1M31 = (1)(-5) = -5
M32 = \(\left|\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right|\) = -2 – 3 = -5
C32 = (-1)3+2M32 = (-1)(-5) = 5
M33 = \(\left|\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right|\) = 4 + 1 = 5
C33 = (-1)3+3M33 = (1)(5) = 5
Question 5.
Evaluate \(\left|\begin{array}{ccc}
2 & -3 & 5 \\
6 & 0 & 4 \\
1 & 5 & -7
\end{array}\right|\) and cofactors of elements in the 2nd determinant and verify:
i. – a21.M21 + a22.M22 – a23.M23 = value of A a21.C21 + a22.C22 + a23.C23 — value of A where M21, M22, M23 are minors of a21, a22, a23 and C21, C22, C23 are cofactors of a21, a22, a23.
Solution:
= 2(0 – 20) + 3(- 42 – 4) + 5(30 – 0) = 2(-20) + 3(- 46) + 5(30)
= 2(0 – 20) + 3(- 42 – 4) + 5(30 – 0) = 2(-20) + 3(- 46) + 5(30)
= -40-138+ 150 = -28
– a21.M21 + a22.M22 – a23.M23
= – (6)(- 4) + (0)(-19) – (4)(13)
= 24 + 0 – 52
= -28
– a21.M21 + a22.M22 – a23.M23 = value of A
ii. a21.C21 + a22.C22 + a23.C23
= (6)(4) +(0)(-19)+ (4)(-13)
= 24 + 0-52 .
= -28
a21.C21 + a22.C22 + a23.C23 = value of A
Question 6.
Find the value of determinant expanding along third column \(\left|\begin{array}{ccc}
-1 & 1 & 2 \\
-2 & 3 & -4 \\
-3 & 4 & 0
\end{array}\right|\)
Solution:
Here, \(\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\left|\begin{array}{ccc}
-1 & 1 & 2 \\
-2 & 3 & -4 \\
-3 & 4 & 0
\end{array}\right|\)
Expantion along the third column
= a13C13 + a23C23 + a33C33
= 2 x (-1)1+3 \(\left|\begin{array}{ll}
-2 & 3 \\
-3 & 4
\end{array}\right|\)-4 x (-1)2+3 \(\left|\begin{array}{ll}
-1 & 1 \\
-3 & 4
\end{array}\right|\) + 0 x (-1)3+3 \(\left|\begin{array}{ll}
-1 & 1 \\
-2 & 3
\end{array}\right|\)
= 2 (-8 + 9) +4 (-4 + 3) + O
= 2 – 4
= -2